FMM 笔记:FMM(colab上执行)【官方案例解读】

2024-02-26 23:44

本文主要是介绍FMM 笔记:FMM(colab上执行)【官方案例解读】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在colab上运行,所以如何在colab上安装fmm,可见FMM 笔记:在colab上执行FMM-CSDN博客

fmm见:论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_ubodt(upper bounded origin destination table)-CSDN博客

0 导入库 

from fmm import Network,NetworkGraph,FastMapMatch,FastMapMatchConfig,UBODT

1 加载数据(边的shp文件) 【与st-matching部分一致】

import geopandas as gpd
shp_path = "../data/edges.shp"
gdf = gpd.read_file(shp_path)
gdf

2  提取路网信息 【与st-matching部分一致】

network = Network("../data/edges.shp")
#通过Network类加载路网数据(edges.shp)print("Nodes {} edges {}".format(network.get_node_count(),network.get_edge_count()))
#Nodes 17 edges 30graph = NetworkGraph(network)
#使用NetworkGraph类基于这个网络创建一个图形(Graph)对象

3  创建UBODT 【FMM独有】(如有ubodt文件,这一步略去)

FMM独特部分,上界起点-终点表(UBODT),详细内容,见论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_ubodt(upper bounded origin destination table)-CSDN博客

from fmm import UBODTGenAlgorithmubodt_gen = UBODTGenAlgorithm(network,graph)
#创建UBODT生成算法的实例status = ubodt_gen.generate_ubodt("../data/ubodt.txt", 4, binary=False,use_omp=True)
'''
生成UBODT文件,分别设置了
--输出文件路径
--delta (float or int): 搜索半径的阈值,用于限制生成UBODT时考虑的最短路径的最大长度
--binary (bool, optional): 指示输出文件格式是否为二进制。默认为False,表示输出为文本格式。
--use_omp (bool, optional): 指示是否使用OpenMP来并行化UBODT的生成过程。默认为True,允许使用多个CPU核心并行计算,以加速UBODT的生成。print(status)
'''
Status: success
Time takes 0.004 seconds
'''

 ubodt文件内容如下:

pd.read_csv("../data/ubodt.txt",delimiter=';')

 

4 读取ubodt文件

ubodt = UBODT.read_ubodt_csv("../data/ubodt.txt")
ubodt
#<fmm.UBODT; proxy of <Swig Object of type 'std::shared_ptr< FMM::MM::UBODT > *' at 0x7f9f5fe0fea0> >

5  创建FMM模型

传入参数相比于st-matching,多一个ubodt

model = FastMapMatch(network,graph,ubodt)

5.1 定义st-matching模型的配置

k = 4
#candidate 数量
gps_error = 0.5
#gps定位误差
radius = 0.4
#搜索半径fmm_config = FastMapMatchConfig(k,radius,gps_error)

6 单条数据的地图匹配

6.0 输入数据

输入数据是wkt格式的数据

地理笔记:WKT,WKB,GeoJSON-CSDN博客

wkt ='LINESTRING(0.200812146892656 2.14088983050848,1.44262005649717 2.14879943502825,3.06408898305084 2.16066384180791,3.06408898305084 2.7103813559322,3.70872175141242 2.97930790960452,4.11606638418078 2.62337570621469)'

6.1 进行地图匹配

result = model.match_wkt(wkt,fmm_config)rint("Matched path: ", list(result.cpath))
print("Matched edge for each point: ", list(result.opath))
print("Matched edge index ",list(result.indices))
print("Matched geometry: ",result.mgeom.export_wkt())
print("Matched point ", result.pgeom.export_wkt())
'''
Matched path:  [8, 11, 13, 18, 20, 24]
Matched edge for each point:  [8, 11, 18, 18, 20, 24]
Matched edge index  [0, 1, 3, 3, 4, 5]
Matched geometry:  LINESTRING(0.20081215 2,1 2,2 2,3 2,3 3,4 3,4 2.6233757)
Matched point  LINESTRING(0.20081215 2,1.4426201 2,3 2.1606638,3 2.7103814,3.7087218 3,4 2.6233757)
'''

cpath,opath这些的内容见:FMM 笔记:st-matching(colab上执行)【官方案例解读】-CSDN博客

6.2 输出每个点的匹配结果

candidates = []
for c in result.candidates:candidates.append((c.edge_id,c.source,c.target,c.error,c.length,c.offset,c.spdist,c.ep,c.tp))import pandas as pd
df = pd.DataFrame(candidates,columns=["eid","source","target","error","length","offset","spdist","ep","tp"])
df.head()

DataFrame的列含义如下:

  • eid:边的ID。
  • source:边的起点节点ID。
  • target:边的终点节点ID。
  • error:候选点的误差值。
  • length:边的长度。
  • offset:GPS点在边上的偏移量。
  • spdist:GPS点到边的最短距离。
  • eptp:分别表示匹配点在边上的起始和终止位置,作为归一化的比例值。

7 将一个文件中的轨迹分别进行匹配,并输出到另一个文件中

from fmm import GPSConfig,ResultConfig

7.1 输入文件设置【和st-matching 一致】

输入文件长这样:

gpd.read_file("../data/trips.csv")

# Define input data configuration
input_config = GPSConfig()
input_config.file = "../data/trips.csv"
input_config.id = "id"print(input_config.to_string())
'''
[40]
0 秒
print(input_config.to_string())
gps file : ../data/trips.csv
id column : id
geom column : geom
timestamp column : timestamp
x column : x
y column : y
GPS point : false
'''

7.2 输出文件信息【和st-matching一样】

result_config = ResultConfig()
result_config.file = "../data/mr.txt"
result_config.output_config.write_opath = True
#结果文件将包含匹配的路径信息(每个单独点匹配到的边的信息)
print(result_config.to_string())
'''
Result file : ../data/mr.txt
Output fields: opath cpath mgeom 
'''

7.3 路网匹配

status = model.match_gps_file(input_config, result_config, fmm_config)print(status)
'''
Status: success
Time takes 0.003 seconds
Total points 17 matched 17
Map match speed 5666.67 points/s 
'''

7.4  查看匹配结果

import pandas as pd
pd.read_csv("../data/mr.txt",delimiter=';')

这篇关于FMM 笔记:FMM(colab上执行)【官方案例解读】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750541

相关文章

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编