代码随想录算法训练营第四三天 | 最后一块石头的重量 II、目标和、一和零

本文主要是介绍代码随想录算法训练营第四三天 | 最后一块石头的重量 II、目标和、一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 最后一块石头的重量 II
  • 目标和
  • 一和零

LeetCode 1049. 最后一块石头的重量 II
LeetCode 494. 目标和
LeetCode 474.一和零

最后一块石头的重量 II

class Solution {// dp[j] 容量为j 的背包,最多可以背最大重量为dp[j]。// dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i])// 求 sum/2 = target 的背包最多能装多少,就可以求  sum - dp[target] 最少能装多少// 就可以求 最小的可能重量  (sum - dp[target]) - dp[target] public int lastStoneWeightII(int[] stones) {int sum = 0;for (int i : stones) {sum += i;}int target = sum / 2;int[] dp = new int[target + 1];for (int i = 0; i < stones.length; i++) {for (int j = target; j >= stones[i]; j--) {dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int s : stones) {sum += s;}int target = sum / 2;int[][] dp = new int[stones.length][target + 1];for (int j = stones[0]; j <= target; j++) {dp[0][j] = stones[0];}for (int i = 1; i < stones.length; i++) {for (int j = 1; j <= target; j++) {if (j >= stones[i]) {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);} else {dp[i][j] = dp[i - 1][j];}}}return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];}
}

目标和

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

先分析题目:

  • 本题要如何使表达式结果为target,
  • 既然为target,那么就一定有 left组合 - right组合 = target。
  • left + right = sum,而sum是固定的。right = sum - left
  • 公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
  • target是固定的,sum是固定的,left就可以求出来。
  • 此时问题就是在集合nums中找出和为left的组合。

回溯方法中的组合问题,但会超时

class Solution {// left组合 - right组合 = target。// left - (sum - left) = target 推导出 left = (target + sum)/2 。// 此时问题就是在集合nums中找出和为left的组合。public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) sum += nums[i];if (target > sum) return 0;if ((target + sum) % 2 == 1) return 0;int bagSize = (target + sum) / 2;  // bagsize就是要求的和Arrays.sort(nums);backtracking(nums, bagSize, 0, 0);return result.size();}List<List<Integer>> result = new ArrayList<>();;List<Integer> path = new ArrayList<>();;private void backtracking(int[] nums, int target, int sum, int startIndex) {if (sum == target) result.add(new ArrayList<>(path));for (int i = startIndex; i < nums.length && sum + nums[i] <= target; i++) {sum += nums[i];path.add(nums[i]);backtracking(nums, target, sum, i+1);sum -= nums[i];path.removeLast();}}
}
  • 动态规划 01 背包问题

    假设加法的总和是 x, 那么减法对应的总和就是 sum - x

    所以要求的是 x - (sum - x) = target

    x = (target + sum) / 2

    问题就转化为,装满容量为x的背包,有几种方法

  • 之前的背包问题是:求容量为 j 的背包,最多能装多少

  • 本题则是 装满有几种方法 组合问题

    • dp[j] : 填满 j 这么大容积的包,有dp[j]种方法
    • dp[j] += dp[j - nums[i]]
    • dp[0] = 1
    • nums放在外循环,target在内循环,且内循环倒序。

在这里插入图片描述

class Solution {// dp[j] : 填满 j 容积的包,有 dp[j] 种方法// dp[j] += dp[j - nums[i]]   求组合类问题的公式,都是类似这种:// dp[0] = 1// nums放在外循环,target在内循环,且内循环倒序。public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if (target > sum) return 0;if (target < 0 && sum < -target) return 0;if ((target + sum) % 2 != 0) return 0;int size = (target + sum) / 2;int[] dp = new int[size + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = size; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[size];} 
}
class Solution {public int findTargetSumWays(int[] nums, int target) {// 01背包应用之“有多少种不同的填满背包最大容量的方法“// 易于理解的二维数组解法及详细注释int sum = 0;for (int n: nums) sum += n;if (sum < Math.abs(target)) return 0;if ((sum + target) % 2 != 0) return 0;int left = (sum + target) / 2;// dp[i][j]:遍历到数组第i个数时, left为j时的能装满背包的方法总数int[][] dp = new int[nums.length][left + 1];// 初始化最上行(dp[0][j]),当nums[0] == j时(注意nums[0]和j都一定是大于等于零的,因此不需要判断等于-j时的情况),有唯一一种取法可取到j,dp[0][j]此时等于1// nums[0] <= left 时, 取 nums[0] == j 这个时候 dp 数组= 1 // 其他情况dp[0][j] = 0// java整数数组默认初始值为0if (nums[0] <= left) dp[0][nums[0]] = 1;// 初始化最左列(dp[i][0])// 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案// n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)int numZeros = 0;for (int i = 0; i < nums.length; i++) {if (nums[i] == 0) {numZeros++;}dp[i][0] = (int) Math.pow(2, numZeros);}// 递推公式// 当nums[i] > j时,这时候nums[i]一定不能取,所以是dp[i - 1][j]种方案数// nums[i] <= j时,num[i]可取可不取,因此方案数是dp[i - 1][j] + dp[i - 1][j - nums[i]]for (int  i = 1;  i < nums.length; i++) {for (int j = 1; j <= left; j++) {if (nums[i] > j) {dp[i][j] = dp[i - 1][j];}else {dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i]];}}}return dp[nums.length - 1][left];}
}

一和零

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

  • 背包 两个维度 m个0 和 n 个1
  • 物品,价值每个都是 1
  • 典型的01背包
class Solution {// dp[i][j] 最多有 i 个 0 和 j 个 1 的strs 的最大子集的大小为 dp[i][j]// dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)// 物品的重量有两个维度// 初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。// 外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历// 物品就是strs里的字符串,背包容量就是题目描述中的m和n。public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m + 1][n + 1];int oneNum, zeroNum;for (String str : strs) {oneNum = 0;zeroNum = 0;for (char ch : str.toCharArray()) {if (ch == '0') zeroNum++;else oneNum++;}for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}   }return dp[m][n];}
}

这篇关于代码随想录算法训练营第四三天 | 最后一块石头的重量 II、目标和、一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750423

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据