【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现)

本文主要是介绍【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华大学驭风计划课程链接 

学堂在线 - 精品在线课程学习平台 (xuetangx.com)

代码和报告均为本人自己实现(实验满分),此次实验开源代码,如果需要数据集可以私聊博主

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~求点赞+关注

后续持续更新机器学习专栏

实验说明

英雄联盟(League of Legends,LoL)是一个多人在线竞技游戏,由拳头游戏(Riot Games)公司出品。在游戏中,每位玩家控制一位有独特技能的英雄,红蓝两支队伍各有五位玩家进行对战,目标是摧毁对方的基地水晶。水晶有多座防御塔保护,通常需要先摧毁一些防御塔再摧毁水晶。玩家所控制的英雄起初非常弱,需要不断击杀小兵、野怪和对方英雄来获得金币、经验。经验可以提升英雄等级和技能等级,金币可以用来购买装备提升攻击、防御等属性。对战过程中一般没有己方单位在附近的地点是没有视野的,即无法看到对面单位,双方可以通过使用守卫来监视某个地点,洞察对面走向、制定战术。 本数据集来自Kaggle,包含了9879场钻一到大师段位的单双排对局,对局双方几乎是同一水平。每条数据是前10分钟的对局情况,每支队伍有19个特征,红蓝双方共38个特征。这些特征包括英雄击杀、死亡,金钱、经验、等级情况等等。一局游戏一般会持续30至40分钟,但是实际前10分钟的局面很大程度上影响了之后胜负的走向。作为最成功的电子竞技游戏之一,对局数据、选手数据的量化与研究具有重要意义,可以启发游戏将来的发展和改进。

本任务是希望同学们依据注释的要求,对代码中空缺部分进行填写,完成决策树模型的详细实现,根据已有的对局前10分钟特征信息,预测最后获胜方是蓝色方还是红色方,了解执行一个机器学习任务的大致流程

 导入工具包

pandas是数据分析和处理常用的工具包,非常适合处理行列表格数据。numpy是数学运算工具包,支持高效的矩阵、向量运算。sklearn是机器学习常用工具包,包括了一些已经实现好的简单模型和一些常用数据处理方法、评价指标等函数。

from collections import Counter
import pandas as pd # 数据处理
import numpy as np # 数学运算
from sklearn.model_selection import train_test_split, cross_validate # 划分数据集函数
from sklearn.metrics import accuracy_score # 准确率函数
RANDOM_SEED = 2020 # 固定随机种子

读入数据

假设数据文件放在`./data/`目录下,标准的csv文件可以用pandas里的`read_csv()`函数直接读入。文件共有40列,38个特征(红蓝方各19),1个标签列(blueWins),和一个对局标号(gameId)。对局标号不是标签也不是特征,可以舍去。

csv_data = './data/high_diamond_ranked_10min.csv' # 数据路径
data_df = pd.read_csv(csv_data, sep=',') # 读入csv文件为pandas的DataFrame
data_df = data_df.drop(columns='gameId') # 舍去对局标号列

 数据概览

对于一个机器学习问题,在拿到任务和数据后,首先需要观察数据的情况,比如我们可以通过`.iloc[0]`取出数据的第一行并输出。不难看出每个特征都存成了float64浮点数,该对局蓝色方开局10分钟有小优势。同时也可以发现有些特征列是重复冗余的,比如blueGoldDiff表示蓝色队金币优势,redGoldDiff表示红色方金币优势,这两个特征是完全对称的互为相反数。blueCSPerMin是蓝色方每分钟击杀小兵数,它乘10就是10分钟所有小兵击杀数blueTotalMinionsKilled。在之后的特征处理过程中可以考虑去除这些冗余特征。

另外,pandas有非常方便的`describe()`函数,可以直接通过DataFrame进行调用,可以展示每一列数据的一些统计信息,对数据分布情况有大致了解,比如blueKills蓝色方击杀英雄数在前十分钟的平均数是6.14、方差为2.93,中位数是6,百分之五十以上的对局中该特征在4-8之间,等等。

print(data_df.iloc[0]) # 输出第一行数据
data_df.describe

这篇关于【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749293

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima