【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现)

本文主要是介绍【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华大学驭风计划课程链接 

学堂在线 - 精品在线课程学习平台 (xuetangx.com)

代码和报告均为本人自己实现(实验满分),此次实验开源代码,如果需要数据集可以私聊博主

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~求点赞+关注

后续持续更新机器学习专栏

实验说明

英雄联盟(League of Legends,LoL)是一个多人在线竞技游戏,由拳头游戏(Riot Games)公司出品。在游戏中,每位玩家控制一位有独特技能的英雄,红蓝两支队伍各有五位玩家进行对战,目标是摧毁对方的基地水晶。水晶有多座防御塔保护,通常需要先摧毁一些防御塔再摧毁水晶。玩家所控制的英雄起初非常弱,需要不断击杀小兵、野怪和对方英雄来获得金币、经验。经验可以提升英雄等级和技能等级,金币可以用来购买装备提升攻击、防御等属性。对战过程中一般没有己方单位在附近的地点是没有视野的,即无法看到对面单位,双方可以通过使用守卫来监视某个地点,洞察对面走向、制定战术。 本数据集来自Kaggle,包含了9879场钻一到大师段位的单双排对局,对局双方几乎是同一水平。每条数据是前10分钟的对局情况,每支队伍有19个特征,红蓝双方共38个特征。这些特征包括英雄击杀、死亡,金钱、经验、等级情况等等。一局游戏一般会持续30至40分钟,但是实际前10分钟的局面很大程度上影响了之后胜负的走向。作为最成功的电子竞技游戏之一,对局数据、选手数据的量化与研究具有重要意义,可以启发游戏将来的发展和改进。

本任务是希望同学们依据注释的要求,对代码中空缺部分进行填写,完成决策树模型的详细实现,根据已有的对局前10分钟特征信息,预测最后获胜方是蓝色方还是红色方,了解执行一个机器学习任务的大致流程

 导入工具包

pandas是数据分析和处理常用的工具包,非常适合处理行列表格数据。numpy是数学运算工具包,支持高效的矩阵、向量运算。sklearn是机器学习常用工具包,包括了一些已经实现好的简单模型和一些常用数据处理方法、评价指标等函数。

from collections import Counter
import pandas as pd # 数据处理
import numpy as np # 数学运算
from sklearn.model_selection import train_test_split, cross_validate # 划分数据集函数
from sklearn.metrics import accuracy_score # 准确率函数
RANDOM_SEED = 2020 # 固定随机种子

读入数据

假设数据文件放在`./data/`目录下,标准的csv文件可以用pandas里的`read_csv()`函数直接读入。文件共有40列,38个特征(红蓝方各19),1个标签列(blueWins),和一个对局标号(gameId)。对局标号不是标签也不是特征,可以舍去。

csv_data = './data/high_diamond_ranked_10min.csv' # 数据路径
data_df = pd.read_csv(csv_data, sep=',') # 读入csv文件为pandas的DataFrame
data_df = data_df.drop(columns='gameId') # 舍去对局标号列

 数据概览

对于一个机器学习问题,在拿到任务和数据后,首先需要观察数据的情况,比如我们可以通过`.iloc[0]`取出数据的第一行并输出。不难看出每个特征都存成了float64浮点数,该对局蓝色方开局10分钟有小优势。同时也可以发现有些特征列是重复冗余的,比如blueGoldDiff表示蓝色队金币优势,redGoldDiff表示红色方金币优势,这两个特征是完全对称的互为相反数。blueCSPerMin是蓝色方每分钟击杀小兵数,它乘10就是10分钟所有小兵击杀数blueTotalMinionsKilled。在之后的特征处理过程中可以考虑去除这些冗余特征。

另外,pandas有非常方便的`describe()`函数,可以直接通过DataFrame进行调用,可以展示每一列数据的一些统计信息,对数据分布情况有大致了解,比如blueKills蓝色方击杀英雄数在前十分钟的平均数是6.14、方差为2.93,中位数是6,百分之五十以上的对局中该特征在4-8之间,等等。

print(data_df.iloc[0]) # 输出第一行数据
data_df.describe

这篇关于【机器学习】实验1,基于决策树的英雄联盟游戏胜负预测(完整代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/749293

相关文章

golang 对象池sync.Pool的实现

《golang对象池sync.Pool的实现》:本文主要介绍golang对象池sync.Pool的实现,用于缓存和复用临时对象,以减少内存分配和垃圾回收的压力,下面就来介绍一下,感兴趣的可以了解... 目录sync.Pool的用法原理sync.Pool 的使用示例sync.Pool 的使用场景注意sync.

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.

java对接第三方接口的三种实现方式

《java对接第三方接口的三种实现方式》:本文主要介绍java对接第三方接口的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录HttpURLConnection调用方法CloseableHttpClient调用RestTemplate调用总结在日常工作

golang中slice扩容的具体实现

《golang中slice扩容的具体实现》Go语言中的切片扩容机制是Go运行时的一个关键部分,它确保切片在动态增加元素时能够高效地管理内存,本文主要介绍了golang中slice扩容的具体实现,感兴趣... 目录1. 切片扩容的触发append 函数的实现2. runtime.growslice 函数gro

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal