推荐系统 - FM模型原理和实践

2024-02-26 05:18

本文主要是介绍推荐系统 - FM模型原理和实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文收录在推荐系统专栏,专栏系统化的整理推荐系统相关的算法和框架,并记录了相关实践经验,所有代码都已整理至推荐算法实战集合(hub-recsys)。

目录

一. FM概述

二. FM原理

2.1 模型推导

2.2 模型求解

三. FM实战


一. FM概述

FM(Factorization Machines,因子分解机),简称FM模型,由Steffen Rendle于2010年在ICDM上提出。FM模型是一种通用的预测方法,主要有以下的特点和优势,基于此在推荐系统和计算广告领域[如: CTR预估(click-through rate)]具备良好的表现。

  1. 特征组合:FM实现了二阶特征交叉,无需人工也非像MLP结构是种低效率地捕获特征组合的结构。
  2. 引入隐向量:极大地减少模型参数,增强模型泛化能力,稀疏数据可学习。
  3. 线性复杂度:通过公式的转化,实现线性计算复杂度。

二. FM原理

2.1 模型推导

在正式引入FM之前,LR模型是CTR预估领域早期最成功的模型 —“线性模型+人工特征组合引入非线性”的模式。具有简单方便易解释容易上规模等诸多好处。

实际应用的场景中,大量的特征是关联的。然而线性模型是假设特征相互独立,并没有考虑到特征与特征之间的相互关系,LR中只能依靠人工特征交叉,效率不高,能否在模型层面引入特征组合的能力?

我们采用多项式模型,用来表述特征间的相关性,在多项式模型中,特征xi与xj的组合用xixj表示。为了简单起见,我们讨论二阶多项式模型。具体的模型表达式如上所示,n表示样本的特征数量,xi表示第i个特征。然而上述的多项式模型存在以下缺点:

  • 参数规模复杂,组合部分的特征相关参数共有n(n−1)/2个。
  • 由于数据稀缺,满足xi,xj都不为0的情况非常少,这样将导致ωij无法通过训练得出。

为了解决上述的多项式模型的缺点,可以对二阶项参数施加某种限制,减少模型参数的自由度。FM 施加的限制是要求二阶项系数矩阵是低秩的,能够分解为低秩矩阵的乘积:

以上就是FM模型的表达式。k是超参数,即lantent vector的维度,可以设置较少的k值(一般设置在100以内,k<<n),就将参数个数减少到 kn,极大地减少模型参数,增强模型泛化能力。然而上式如果要计算的话,时间复杂度是O(kn2), 可以通过如下方式化简。

上式为FM的最终结果,接下来我们需要对FM的模型参数求解。

 

2.2 模型求解

在获得FM的模型方程后,根据不同的应用,FM可以采用不同的损失函数loss function来作为优化目标:

  • 如回归Regression:y^(x)直接作为预测值,损失函数可以采用least square error;
  • 二值分类Binary Classification:y^(x)需转化为二值标签,如0,1。损失函数可以采用hinge loss或logit loss;
  • 排序Rank:x可能需要转化为pair-wise的形式如(X^a,X^b),损失函数可以采用pairwise loss。

然后对模型进行训练,目前FM的学习算法主要包括以下三种:

  1. 随机梯度下降法(Stochastic Gradient Descent, SGD)
  2. 交替最小二乘法(Alternating Least Square Method,ALS)
  3. 马尔科夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC)

随机梯度下降的方法来求解,如下:

最终的模型求解和得带如下所示,主要超参数有:初始化参数、学习率、正则化稀疏

FM和MF的关系?

本质上,MF模型是FM模型的特例,MF可以被认为是只有User ID 和Item ID这两个特征Fields的FM模型,MF将这两类特征通过矩阵分解,来达到将这两类特征embedding化表达的目的。而FM则可以看作是MF模型的进一步拓展,除了User ID和Item ID这两类特征外,很多其它类型的特征,都可以进一步融入FM模型里,它将所有这些特征转化为embedding低维向量表达,并计算任意两个特征embedding的内积,就是特征组合的权重。

FM继承了MF的特征embedding化表达这个优点,同时引入了更多Side information作为特征,将更多特征及Side information embedding化融入FM模型中。所以很明显FM模型更灵活,能适应更多场合的应用范围。

 

三. FM实战

利用movieLen和基于随机梯度下降的方法来实现FM算法,梯度下降的关键代码如下所示。

def _sgd_theta_step(self, x_data_ptr, x_ind_ptr, xnnz, y):mult = 0.0w0 = self.w0w = self.wv = self.vgrad_w = self.grad_wgrad_v = self.grad_vlearning_rate = self.learning_ratereg_0 = self.reg_0reg_w = self.reg_wreg_v = self.reg_vp = self._predict_instance(x_data_ptr, x_ind_ptr, xnnz)if self.task == "regression":p = min(self.max_target, p)p = max(self.min_target, p)mult = 2 * (p - y);else:mult = y * ((1.0 / (1.0 + math.exp(-y * p))) - 1.0)# Update global biasif self.k0:grad_0 = multw0 -= learning_rate * (grad_0 + 2 * reg_0 * w0)# Update feature biasesif self.k1:for i in range(xnnz):feature = x_ind_ptr[i]grad_w[feature] = mult * x_data_ptr[i]w[feature] -= learning_rate * (grad_w[feature]+ 2 * reg_w * w[feature])# Update feature factor vectorsfor f in range(self.num_factors):for i in range(xnnz):feature = x_ind_ptr[i]grad_v[f, feature] = mult * (x_data_ptr[i] * (self.sum[f] - v[f, feature] * x_data_ptr[i]))v[f, feature] -= learning_rate * (grad_v[f, feature] + 2 * reg_v[f] * v[f, feature])

完整的实现代码:https://github.com/hxyue/hub-recsys

 

这篇关于推荐系统 - FM模型原理和实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747795

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语