第6.4章:StarRocks查询加速——Colocation Join

2024-02-26 02:28

本文主要是介绍第6.4章:StarRocks查询加速——Colocation Join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、StarRocks数据划分

1.1 分区

1.2 分桶

二、Colocation Join实现原理

2.1 Colocate Join概述

2.2 Colocate Join实现原理

三、应用案例

注:本篇文章阐述的是StarRocks-3.2版本的Colocation Join

官网文章地址:

Colocate Join | StarRocks

一、StarRocks数据划分

    在介绍Colocation Join之前,再回顾下StarRocks的数据划分及tablet多副本机制。

   StarRocks支持两层的数据划分,第一层是Range  Partition,第二层是Hash  Bucket(Tablet)。StarRocks的数据表按照分区分桶规则,被水平切分成若干个数据分片(Tablet,也称作数据分桶 Bucket)存储在不同的be节点上,每个tablet都有多个副本(默认是3副本)。各个 Tablet 之间的数据没有交集,并且在物理上是独立存储的。Tablet 是数据移动、复制等操作的最小物理存储单元。 一个 Tablet 只属于一个数据分区(Partition),而一个 Partition 包含若干个 Tablet。

   下图说明 Table、Partition、Bucket(Tablet) 的关系:

  • 假设Table 按照 Range 的方式按照 date 字段进行分区,得到了 N 个 Partition

  • 每个 Partition 通过相同的 Hash 方式将其中的数据划分为 M 个 Bucket(Tablet)

  • 从逻辑上来说,Bucket 1 可以包含 N 个 Partition 中划分得到的数据,比如下图中的 Tablet 11、Tablet 21、Tablet N1

1.1 分区

    逻辑概念,分区用于将数据划分成不同的区间,主要作用是将一张表按照分区键拆分成不同的管理单元。查询时,通过分区裁剪,可以减少扫描的数据量,显著优化查询性能。

1.2 分桶

    物理概念,StarRocks一般采用Hash算法作为分桶算法。在同一分区内,分桶键哈希值相同的数据会划分到同一个tablet(数据分片),tablet以多副本冗余的形式存储,是数据均衡和恢复的最⼩单位,数据导入和查询最终都下沉到所涉及的 tablet副本上。

二、Colocation Join实现原理

2.1 Colocate Join概述

      在数据分布满足一定条件的前提下,计算节点只需做本地 Join,减少跨节点的数据移动和网络传输开销,提高查询性能。Colocate Join 十分适合几张大表按照相同字段分桶的场景,这样可以将数据预先存储到相同的分桶中,实现本地计算。

    要理解这个算法,需要先了解以下几个概念:

  •  Colocation Group(CG):同一 CG 内的表需遵循相同的 Colocation Group Schema(CGS),即表对应的分桶副本具有一致的分桶键、副本数量和副本放置方式。如此可以保证同一 CG 内,所有表的数据分布在相同一组 BE 节点上。
  • Colocation Group Schema(CGS):用于描述一个 CG 中的Table,和Colocation相关的通用 Schema 信息。包括分桶列类型,分桶数以及副本数等。
  • 分桶编号Bucket Seq:一个表的数据,根据分桶列 Hash、对桶数取模后落在某一个分桶内。假设一个 Table 的分桶数为 8,则共有 [0, 1, 2, 3, 4, 5, 6, 7] 8 个分桶(Bucket)。因此【分桶列 Hash %桶数 】一致的数据会划分到同一个桶中。

2.2 Colocate Join工作原理

     Colocation Join 功能,是将一组拥有相同CGS 的 Table 组成一个 CG。并保证这些 Table 对应的数据分片会落在同一个 BE 节点上。使得当 CG 内的表进行分桶列上的 Join 操作时,可以通过直接进行本地数据 Join,减少数据在节点之间的传输耗时。

  因此核心问题直接转变成【如果保证这些table对应的数据分片会落在同一个be节点上?】

  同一 CG 内的Table必须保证以下属性:

 (1)分桶列和分桶数

   同一 CG内表的分桶键的类型、数量和顺序完全一致,并且桶数一致,从而保证多张表的数据分片能够一一对应地进行分布控制。

   分桶列,即在建表语句中distributed by hash(col1, col2, ...) 中指定的列。分桶列决定了一张表的数据通过哪些列的值进行Hash划分到不同的Tablet 中。同一 CG内的 Table 必须保证分桶列的类型和数量完全一致,并且桶数一致,才能保证多张表的数据分片能够一一对应的进行分布控制。

(2)副本数

  同一个 CG内所有表的所有分区(Partition)的副本数必须一致。如果不一致,可能出现某一个 Tablet 的某一个副本,在同一个 BE 上没有其他的表分片的副本对应。不过,同一个 CG 内的表,分区的个数、范围以及分区列的类型不要求一致。

   ps:同一个 CG 内所有表的分区键,分区数量可以不同。因为Partition只是一个逻辑上的分区,真正影响数据分布在哪一个BE节点的是由Bucket决定的。

    综上,在固定了分桶列和分桶数后,同一个CG内的表会拥有相同的Buckets Seq。而副本数决定了每个分桶内的 Tablet 的多个副本分别存放在哪些 BE 上。假设Buckets Seq为 [0, 1, 2, 3, 4, 5, 6, 7],BE 节点有 [A, B, C, D] 4个。则一个可能的数据分布如下:

    CG 内表的一致的数据分布定义和tablet副本映射,能够保证分桶列值相同的数据都在同一个 BE 节点上,可以进行本地数据 Join。其核心思想是「两次映射」,保证相同的 Distributed Key 的数据会被映射到相同的 Bucket Seq,再保证 Bucket Seq对应的 Bucket 映射到相同的 BE 节点:

三、应用案例

    Colocation Join的使用案例见官网:

Colocate Join | StarRocks本小节介绍如何使用 Colocate Join。icon-default.png?t=N7T8https://docs.starrocks.io/zh/docs/3.1/using_starrocks/Colocate_join/

参考文章:

Apache Doris的Colocation join本地join实现_colocation 怎么做-CSDN博客

Apache Doris的Colocation join本地join实现_colocation 怎么做-CSDN博客

系统架构 | StarRocks

第2.9章:StarRocks表设计--Colocation Join_show colocation_group-CSDN博客

Colocate Join | StarRocks

Apache Doris Join 优化原理介绍 - 掘金

编程小梦|Apache Doris Colocate Join 原理与实践

这篇关于第6.4章:StarRocks查询加速——Colocation Join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747447

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

mysql查询使用_rowid虚拟列的示例

《mysql查询使用_rowid虚拟列的示例》MySQL中,_rowid是InnoDB虚拟列,用于无主键表的行ID查询,若存在主键或唯一列,则指向其,否则使用隐藏ID(不稳定),推荐使用ROW_NUM... 目录1. 基本查询(适用于没有主键的表)2. 检查表是否支持 _rowid3. 注意事项4. 最佳实

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6