Octave实现位置式PID算法

2024-02-26 02:20
文章标签 算法 实现 位置 pid octave

本文主要是介绍Octave实现位置式PID算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于Matlab不让用,只能“你不让爷用,爷就用别的”,选择开源的Octave以及scilab进行相关领域的学习。Octave的代码和Matlab几乎是100%相同的,只有一些专用的包的函数,可能有些还没来得及写,或者有些差异。但这种差异,新手一般体会不到,老手应该能自己解决了吧。

目录

  • 数字PID控制
    • 位置式PID控制算法
    • 偏微分方程求解
    • 离散系统的数字PID控制仿真

数字PID控制

PID控制器是一种线性控制器,根据给定值 r i r_i ri与实际值构成控制偏差 e r r ( t ) = r i ( t ) − y o ( t ) err(t)=r_i(t)-y_o(t) err(t)=ri(t)yo(t)。其控制规律为

u ( t ) = k p ( e r r ( t ) + 1 T 1 ∫ 0 t e r r ( t ) d t + T D d e r r ( t ) d t ) u(t)=k_p(err(t)+\frac{1}{T_1}\int^{t}_{0}err(t)\text dt+\frac{T_D\text derr(t)}{\text dt}) u(t)=kp(err(t)+T110terr(t)dt+dtTDderr(t))

写成传递函数的形式为

G ( s ) = U ( s ) E ( s ) = k p ( 1 + 1 T 1 s + T D s ) G(s)=\frac{U(s)}{E(s)}=k_p(1+\frac{1}{T_1s}+T_Ds) G(s)=E(s)U(s)=kp(1+T1s1+TDs)

其中, k p k_p kp为比例系数; T 1 T_1 T1为积分时间常数; T D T_D TD为微分时间常数。 U ( s ) U(s) U(s)为输出量的拉氏量, E ( s ) E(s) E(s)为输入量的拉氏量。

PID控制器各校正环节如下:

  1. 比例环节:成比例地反应控制系统的偏差信号 e r r ( t ) err(t) err(t),偏差一旦产生,控制器立即产生控制作用,从而减少偏差。
  2. 积分环节:用于消除静差,提高系统的无差度。积分作用的强弱与积分时间常数 T 1 T_1 T1成负相关。
  3. 微分环节:反应偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

位置式PID控制算法

以一系列的采样时刻点 k T kT kT代表连续时间 t t t,以举行法数值积分代替积分,以一阶后向差分近似代替微分,即

{ t ≈ k T , k = 0 , 1 , 2... ∫ 0 1 e r r ( t ) d t ≈ T ∑ j = 0 k e r r ( j T ) = T ∑ j = 0 k e r r j d e r r ( t ) d t ≈ e r r ( k T ) − e r r ( ( k − 1 ) T ) T = e r r k − e r r k − 1 T \left\{\begin{aligned} &t\approx kT, k=0,1,2...\\ &\int^1_0err(t)\text dt\approx T\sum^k_{j=0}err(jT)=T\sum^k_{j=0}err_j\\ &\frac{\text derr(t)}{\text dt}\approx\frac{err(kT)-err((k-1)T)}{T}=\frac{err_k-err_{k-1}}{T} \end{aligned}\right. tkT,k=0,1,2...01err(t)dtTj=0kerr(jT)=Tj=0kerrjdtderr(t)Terr(kT)err((k1)T)=Terrkerrk1

可得离散PID表达式

u ( k ) = k p ( e r r k + T T 1 ∑ j = 0 k e r r j + T D T ( e r r k − e r r k − 1 ) ) = k p e r r k + k I ∑ j = = 0 k e r r j T + k d e r r k − e r r k − 1 T \begin{aligned} u(k)=&k_p(err_k+\frac{T}{T_1}\sum^k_{j=0}err_j+\frac{T_D}{T}(err_k-err_{k-1}))\\ =&k_perr_k+k_I\sum^k_{j==0}err_jT+k_d\frac{err_k-err_{k-1}}{T} \end{aligned} u(k)==kp(errk+T1Tj=0kerrj+TTD(errkerrk1))kperrk+kIj==0kerrjT+kdTerrkerrk1

其中, k I = k p T 1 , k d = k p T D k_I=\frac{k_p}{T_1},k_d=k_pT_D kI=T1kp,kd=kpTD T T T为采样周期, k k k为采样序号, k = 1 , 2 , . . . k=1,2,... k=1,2,...。其控制系统为

在这里插入图片描述

偏微分方程求解

设被控对象为电机模型传递函数

G ( s ) = 1 J s 2 + B s , J = 0.0067 , B = 0.10 G(s)=\frac{1}{Js^2+Bs},J=0.0067,B=0.10 G(s)=Js2+Bs1,J=0.0067,B=0.10

则我们可以通过Octave通过ODE45的方法来求解方程,输入信号为 r i n ( k ) = 0.50 sin ⁡ ( 2 π t ) r_{in}(k)=0.50\sin(2\pi t) rin(k)=0.50sin(2πt),采用PID控制方法设计控制器,其中 k p = 20.0 , k d = 0.50 k_p=20.0,k_d=0.50 kp=20.0,kd=0.50

其中,ODE45的调用方法为

[t,x]=ode45(func,tspan,x0,op,para)

其返回值t是一个列向量,x是一个矩阵;参数func为待处理函数或其路径,tspan=[t0 tf]为微分方程组的积分区间,

代码为

ts = 0.001; %Sampling time
xk = zeros(2,1);
e1 = 0; u1 = 0; %初始化误差time = ts:ts:2000*ts
rin = 0.5*sin(1*2*pi*time);
for k = 1:1:2000para = u1;tSpan = [0 ts];[tt, xx] = ode45("test1_func", tSpan, xk, [], para);xk = xx(length(xx),:);yout(k) = xk(1);e(k) = rin(k) - yout(k);  %误差de(k) = (e(k)-e1)/ts;     %误差的一阶导数u(k) = 20.0*e(k)+0.5*de(k);u(k) = min(u(k),10.0);    %限制u(k)所在区间为[-10,10]u(k) = max(u(k),-10.0);u1 = u(k);e1 = e(k);
endsubplot(1,2,1)
plot(time, rin, 'r', time ,yout, 'b');
xlabel('time(s)'), ylabel('rin,yout');subplot(1,2,2)
plot(time, rin-yout, 'r');
xlabel('time(s)'), ylabel('error');

函数文件为

% test1_func.m
function dy=PlantModel(t,y,flag,para)u = para;J = 0.0067;B = 0.1;dy = zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2)+(1/J)*u;

得到其结果为

在这里插入图片描述
此外,可以通过XCOS进行仿真,被控对象为三阶传递函数,采用XCOS与脚本结合的方式。主程序由XCOS实现,控制由scilab实现。

离散系统的数字PID控制仿真

控制对象为

G ( S ) = 523500 s 3 + 87.35 s 2 + 10470 s G(S)=\frac{523500}{s^3+87.35s^2+10470s} G(S)=s3+87.35s2+10470s523500

采样时间为1ms,采用z变换进行离散化,经过z变换后的离散化对象为

y o u t = − d e n ( 2 ) y o u t ( k − 1 ) − d e n ( 3 ) y o u t ( k − 2 ) − d e n ( 4 ) y o u t ( k − 3 ) + n u m ( 2 ) u ( k − 1 ) + n u m ( 3 ) u ( k − 2 ) + n u m ( 1 ) u ( k − 3 ) \begin{aligned} y_{out}=&-den(2)y_{out}(k-1)-den(3)y_{out}(k-2)-den(4)y_{out}(k-3)\\ &+num(2)u(k-1)+num(3)u(k-2)+num(1)u(k-3) \end{aligned} yout=den(2)yout(k1)den(3)yout(k2)den(4)yout(k3)+num(2)u(k1)+num(3)u(k2)+num(1)u(k3)

其Octave控制代码为

ts = 0.001; %采样时间
N = 1000;    %采样个数pkg load control    %载入control包,内含tf函数
pkg load tisean     %内含c2d函数sys = tf(2.235e5,[1,87.35,1.047e4,0]); 
dsys = c2d(sys,ts,'z'); %z变换
[num,den] = tfdata(dsys, 'v');titles = ["step signal";"square signal";"sin signal"]for s = 1:3
%参数初始化
u = zeros(1,3);y = zeros(1,3);x = zeros(1,3);
err = 0;time = ts:ts:ts*N;
rin = ones(1,N);
PDI = [2 0.001 0.001];          %表示P,D,I的分量
if s==2rin = sign(sin(2*2*pi*time)); %方波信号
elseif s==3rin = 0.5*sin(2*2*pi*time);   %正弦信号
endiffor k = 1:1:Nyout(k) = -sum(den(2:4).*y)+sum(num.*u);error(k) = rin(k)-yout(k);u(2:3) = u(1:2);  u(1) = sum(PDI.*x);  %PID 控制u(1) = sort([u(1),10,-10])(2)   %区间限制y = [yout(k) y(1:2)];x(1) = error(k);x(2) = (error(k)-err)/ts;x(3) = x(3) + error(k)*ts;err = error(k);
endsubplot(230+s)
plot(time, rin, 'b', time, yout, 'r')
xlabel('time(s)'), ylabel('rin, rout')
title(titles(s,:))subplot(233+s)
plot(time,error)
xlabel('time(s)'),ylabel('error')
end

在这里插入图片描述
这种PID控制算法的缺点是,每次输出均与过去的状态有关,故需要对误差量进行累加,如果位置传感器出现故障, u ( k ) u(k) u(k)可能会出现大幅度变化,从而引起执行机构位置的大幅度变化,从而产生事故。为避免这种情况发生,可采用增量式PID控制算法。

这篇关于Octave实现位置式PID算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747441

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too