Python性能测试框架Locust实战教程

2024-02-26 01:36

本文主要是介绍Python性能测试框架Locust实战教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01、认识Locust

Locust是一个比较容易上手的分布式用户负载测试工具。它旨在对网站(或其他系统)进行负载测试,并确定系统可以处理多少个并发用户,Locust 在英文中是 蝗虫 的意思:作者的想法是在测试期间,放一大群 蝗虫 攻击您的网站。当然事先是可以用 Locust 定义每个蝗虫(或测试用户)的行为,并且通过 Web UI 实时监视围攻过程。

locust运行原理

Locust 的运行原理是完全基于事件运行的,因此可以在一台计算机上支持数千个并发用户。与许多其他基于事件的应用程序相比,它不使用回调(比如 Nodejs 就是属于回调,Locust 不使用这种的逻辑)。相反,它通过 gevent 使用轻量级进程。测试您站点的每个蝗虫实际上都在其自己的进程中运行

Locust的特点

1、用Python编写测试方案 不需要在UI界面上点击,只需要正常编写代码即可,灵活性比较强

2、分布式&可扩展 Locust 支持分布在多台计算机上的运行负载测试(可以多台机器并行开搞)。

3、统计结果基于Web界面 Locust 有一个简单的用户界面,可实时显示相关的测试详细信息,并且统计结果界面是基于网页的,而网页是天生跨平台的,所以 Locust 是跨平台且易于扩展的

4、可以测试任何网页/应用/系统 只需用 python 编写想要测试的方案,然后放”蝗虫”去怼需要测试的项目就可以了,非常简单!

02、测试工具哪个好

LoadRunner

是非常有名的商业性能测试工具,功能非常强大。使用也比较复杂,但收费贼贵

Jmeter

同样是非常有名的开源性能测试工具,功能也很完善。可以当做接口测试工具来测试接口,但同时它也是一个标准的性能测试工具

Locust

功能上虽然不如LoadRunner及Jmeter丰富,但其也有不少优点。Locust 完全基本 Python 编程语言并且 HTTP 请求完全基于 Requests 库

LoadRunner 和 Jmeter 这类采用进程和线程的测试工具,都很难在单机上模拟出较高的并发压力。Locust 的并发机制摒弃了进程和线程,采用协程(gevent)的机制。协程避免了系统级资源调度,由此可以大幅提高单机的并发能力。

03、环境安装

Python环境配置

(1)首先去Python官网下载Python3.6+版本解释器

(2)安装解释器并配置环境变量(将python的根目录以及Scripts路径配置到环境变量Path下面)

(3)打开cmd窗口,分别输入python、pip命令并回车,如果没有报错,则说明Python环境配置成功

Locust环境配置

(1)打开cmd窗口,输入pip install locustio==0.14.6 并回车,此时系统会自动下载locust库以及部分依赖库

PS:locust 目前有2个大版本,0和1的版本,两个版本之间语法差异比较大,安装1*版本,直接pip install locust 即可

(2)安装成功后验证:在cmd窗口中,输入python,进入python开发环境,然后输入import locust,如果没有报错,则说明locust安装成功

04、如何使用

Locust类

  • HttpLocust类 继承了Locust类,表示将要生成的每一个虚拟的HTTP用户,用来发送请求到进行负载测试的系统。
  • task_set属性 该 task_set 属性指向定义的用户行为的类
  • host属性 host属性是要加载的域名(URL 前缀,例如http://xxxxxx)
  • wait_time属性 用于发送Http请求时,虚拟用户需要等待的时间,等待时间是一个区间范围。单位为毫秒,等待时间在min_wait和max_wait之间随机选择

TaskSequence 类

  • TaskSequence 类
    TaskSequence 类是 TaskSet,但其任务将按顺序执行。
  • @task装饰器
    用于标识测试任务,并且可以通过task装饰器设置权重用于执行任务的执行率
  • @seq_task装饰器
    用于指定接口的执行顺序。可以把@task装饰器和@seq_task装饰器一起组合使用

初始化方法

1、setup 和 teardown方法 setup 和 teardown 都是只能运行一次的方法。在任务开始运行之前运行setup,而在所有任务完成并且蝗虫退出后运行 teardown;这使您能够在任务开始运行之前做一些准备工作(比如创建数据库,或者打印日志 等等),并在蝗虫退出之前进行清理。

2、on_start 和 on_stop 方法 每个虚拟用户执行操作时运行on_start方法,退出时执行on_stop方法

3、初始化方法的执行顺序 setup > on_start > on_stop > teardown

常用3种启动方式

直接启动

locust -f stock_center.py
(stock_center.py为执行脚本,可在编译器中直接运行该脚本)

无web页面启动

locust -f stock_center.py --no-web -c 200 -r 20 -t 1m
(–no-web 代表不需要启动UI页面
-c 代表需要并发的用户数
-r 代表每秒并发的用户数-t 代表需要运行的时间)

分布式启动

locust -f stock_center.py --master # 指定当前机器为master主机
locust -f stock_center.py --slave --master-host=10.xxx.xxx.xxx # 指定当前机器为从机并指向对应master主机

启动页面

Number of total users simulate: 设置需要并发的总人数

Hatch rate(users spawned/second): 每秒启动的虚拟用户数

Start swarming: 执行locust脚本

Type: 请求类型,即接口的请求方法

Name: 接口请求路径

Requests: 当前已完成的请求数量

Fails: 当前失败的数量

Median: 响应时间的中间值,即50%的响应时间在这个数值范围内,单位为毫秒

Average: 平均响应时间,单位为毫秒

Min: 最小响应时间,单位为毫秒

Max: 最大响应时间,单位为毫秒

Average Size: 平均请求的数据量, 单位为字节

Current RPS: 每秒能处理的请求数目

各模块说明

  • New test:点击该按钮可对模拟的总虚拟用户数和每秒启动的虚拟用户数进行编辑;
  • Statistics:类似于jmeter中Listen的聚合报告;
  • Charts:测试结果变化趋势的曲线展示图,分别为每秒完成的请求数(RPS)、响应时间、 不同时间的虚拟用户数;
  • Failures:失败请求的展示界面;
  • Exceptions:异常请求的展示界面;
  • Download Data:测试数据下载模块, 提供四种类型的CSV格式的下载, 分别是:Statistics、responsetime、failures、exceptions;

05、Locust的总结

局限:

locust的局限性在于:目前其本身对测试过程的监控和测试结果展示,不如jmeter全面和详细,需要进行二次开发才能满足需求越来越复杂的性能测试需要。

优势:

纯脚本形式,并且HTTP请求完全基于Requests库。用过Requests的都知道,这个库非常简洁易用,但功能十分强

另外一点就是并发机制了。Locust的并发机制摒弃了进程和线程,采用协程(gevent)的机制。避免了系统级资源调度,由此大幅提高了性能。正常情况下,单台普通配置的测试机可以生产数千并发压力,这是LoadRunner和Jmeter都无法实现的。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你! 

这篇关于Python性能测试框架Locust实战教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747321

相关文章

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield