算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)

本文主要是介绍算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之简单多状态 dp 问题上

  • 01.按摩师
  • 02.打家劫舍 II
  • 03.删除并获得点数
  • 04.粉刷房子

01.按摩师

题目链接:https://leetcode.cn/problems/the-masseuse-lcci/

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

注意:本题相对原题稍作改动

示例 1

输入: [1,2,3,1]

输出: 4

解释:选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2

输入: [2,7,9,3,1]

输出: 12

解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3

输入: [2,1,4,5,3,1,1,3]

输出: 12

解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

思路

  1. 状态表达: 我们定义两个状态数组,fg

    • f[i] 表示:选择到位置 i 时,此时的最长预约时长,且 nums[i] 必须选。
    • g[i] 表示:选择到位置 i 时,此时的最长预约时长,nums[i] 不选。
  2. 状态转移方程: 对于 f[i]

    • 如果 nums[i] 必须选,那么我们仅需知道 i - 1 位置在不选的情况下的最长预约时长,然后加上 nums[i] 即可,因此 f[i] = g[i - 1] + nums[i]

    对于 g[i]

    • 如果 nums[i] 不选,那么 i - 1 位置上选或者不选都可以。因此,我们需要知道 i - 1 位置上选或者不选两种情况下的最长时长,因此 g[i] = max(f[i - 1], g[i - 1])
  3. 初始化: 由于这道题的初始化比较简单,无需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0 即可。

  4. 填表顺序: 根据状态转移方程,从左往右,两个表一起填。

  5. 返回值: 根据状态表达,我们应该返回 max(f[n - 1], g[n - 1])

代码

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if(n==0) return 0;vector<int> f(n);vector<int> g(n);f[0] = nums[0];for (int i = 1; i < n; ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(g[n - 1], f[n - 1]);}
};

02.打家劫舍 II

题目链接:https://leetcode.cn/problems/house-robber-ii/

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [1,2,3]
输出:3

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

思路

将环形的打家劫舍问题转化为两个单排的问题。具体来说,你分别考虑两种情况:

a. 偷第一个房屋的情况: 在这种情况下,由于首尾相连,你不能偷最后一个房子,因此偷窃范围是 [0, n - 2]。你可以使用之前解决「打家劫舍I」的动态规划方法来找到在这个范围内的最大金额,得到的结果是 x

b. 不偷第一个房屋的情况: 在这种情况下,你可以偷最后一个房子,因此偷窃范围是 [1, n - 1]。同样,使用相同的动态规划方法得到在这个范围内的最大金额,得到的结果是 y

最终的答案就是这两种情况下的最大值,即 max(x, y)

代码

class Solution {
public:int rob(vector<int>& nums) {int n=nums.size();return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1));}int rob1(vector<int>& nums,int start,int end){if(start>end) return 0;int n=nums.size();vector<int> f(n);vector<int> g(n);f[start]=nums[start];for(int i=start+1;i<=end;i++){f[i]=g[i-1]+nums[i];g[i]=max(g[i-1],f[i-1]);}return max(g[end],f[end]);}
};

03.删除并获得点数

题目链接:https://leetcode.cn/problems/delete-and-earn/

给你一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:

输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。

提示:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 104

思路

其实这道题可以看作是「打家劫舍I」问题的变体。通过将每个数字的出现的和记录在 hash 数组中,然后在 hash 数组上应用「打家劫舍」的思路,你能够有效地解决这个问题。

具体来说,可以创建一个大小为 10001(根据题目的数据范围)的 hash 数组,将 nums 数组中的每个元素 x 累加到 hash 数组下标为 x 的位置上。然后就可以使用「打家劫舍I」问题的动态规划方法,从 hash 数组中找到不相邻的元素的最大和。

代码

class Solution {
public:int deleteAndEarn(vector<int>& nums) {int hash[10001] = {0};for(int& x:nums) hash[x]+=x;vector<int> f(10001);vector<int> g(10001);for(int i=1;i<10001;++i){f[i]=g[i-1]+hash[i];g[i]=max(g[i-1],f[i-1]);}return max(f[10000],g[10000]);}
};

04.粉刷房子

题目链接:https://leetcode.cn/problems/JEj789/

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2 

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

思路

  1. 状态表表示:

    • 在处理线性动态规划时,采用“经验+题目要求”方式定义状态表,选择以某个位置为结尾的方式。
    • 在该位置结束时,定义三种颜色选择的状态表,分别表示最后一个位置选择“红色”、“蓝色”和“绿色”的最小花费。
  2. 状态转移方程:

    • 分析三个状态的转移方程,以 dp[i][0] 为例:

      • 若选择在位置 i 粉刷“红色”,考虑前一个位置“蓝色”和“绿色”两种情况的最小花费,再加上当前位置的花费。
      • 类似地,对于 dp[i][1] dp[i][2],分别考虑选择“蓝色”和“绿色”时的最小花费。

      于是状态方程为:

      dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];
      dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];
      dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
      
  3. 初始化:

    • 添加一个辅助节点,将其初始化为 0,确保后续填表的正确性。
    • 注意辅助节点的值要符合题目的要求。
  4. 填表顺序:

    • 根据状态转移方程,从左往右同时填充三个表格。
  5. 返回值:

    • 返回最后一个位置三种颜色选择的最小值,即 min(dp[n][0], min(dp[n][1], dp[n][2]))

代码

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n=costs.size();vector<vector<int>> dp(n+1,vector<int>(3));for(int i=1;i<=n;i++){dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];}return min(dp[n][0],min(dp[n][1],dp[n][2]));}
};

这篇关于算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746703

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图