光谱数据处理:2.数据准确度评价指标的Python计算

2024-02-25 12:36

本文主要是介绍光谱数据处理:2.数据准确度评价指标的Python计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、计算相关系数R²

(1)定义介绍

        相关系数 R²,又叫做决定系数,是一种用来衡量事物之间关系密切程度的指标。我们可以把它想象成一个打分系统,这个分数会告诉我们模型对数据的拟合程度有多好。分数范围是0到1。

(2)完整代码

        首先,生成一组简单的线性相关的数据点;然后,通过sklearn库中的LinearRegression类来训练一个线性回归模型。r2_score函数用于计算模型的相关系数 R²,以评价模型对数据的拟合程度。最后,绘制原始数据和拟合线,并且显示 R² 值。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score# 设置随机数种子,确保每次运行程序时生成的随机数据都是一样的
np.random.seed(0)# 假设有波长这一个特征,和相对应的光谱测量值,生成100个样本的数据集
X = np.random.rand(100, 1) * 100  # 波长特征,假设范围从0到100
y = 5 * X.squeeze() + np.random.randn(100) * 10  # 真实值加上一些随机噪声# 初始化线性回归模型
model = LinearRegression()# 训练模型,即找到最佳拟合线
model.fit(X, y)# 使用模型进行预测
y_pred = model.predict(X)# 计算相关系数 R²,评价模型的拟合效果
r2 = r2_score(y, y_pred)# 绘制原始数据和预测结果的图表
plt.scatter(X, y, color='blue', label='Original Data')  # 原始数据点
plt.plot(X, y_pred, color='red', label='Fit Line')  # 拟合的直线
plt.title(f'Linear Regression Fit (R²: {r2:.2f})')  # 标题,包含R²得分
plt.xlabel('Wavelength')  # x轴标签
plt.ylabel('Spectral Measurement')  # y轴标签
plt.legend()  # 显示图例
plt.show()  # 显示图表

(3)运行结果

二、计算交叉验证均方根误差RMSECV

(1)定义介绍

        交叉验证均方根误差(RMSECV)是一个衡量模型预测精度的指标。为了通俗地解释这个概念,我们可以将其拆解成几个部分来理解:交叉验证(CV)、均方误差(MSE)和均方根误差(RMSE)。

        首先,均方误差(MSE)是一种测量预测值和实际值差距大小的方法。你可以想象有一个靶子,你的任务是射箭,箭头落点的位置是你的预测值,靶心是实际值。每一次射箭,你的箭与靶心之间的距离就好比是预测值和实际值之间的误差。均方误差就是把所有箭与靶心的距离(误差)平方后求平均,这样可以确保误差总是正数,而且更重视那些离靶心远的箭(大误差)。

        然后,均方根误差(RMSE)就是均方误差的平方根。继续用射箭的例子,如果我们计算了MSE,我们得到的是所有箭头与靶心距离平方值的平均数,但这个数是在平方后的尺度上,不是原本的距离尺度。所以,我们得取平方根来回到原来的距离尺度,这样就可以更直观地理解预测值和实际值之间的平均距离了。

        最后,交叉验证(CV)是一种评估模型泛化能力的技术。想象你有一堆箭,而不是每次都用同一些箭射靶,你决定每次选择不同的箭来进行射击,这样可以确保每一支箭都有机会参与射击,并且每次射击都用不同的箭来评估你的射击技巧。在数据模型中,交叉验证就是把数据分成几部分,轮流使用其中一部分作为测试数据,其余作为训练数据,这样可以减少由于数据划分导致的偶然性,得到更可靠的模型评估。

        所以,交叉验证均方根误差(RMSECV)就是在交叉验证过程中计算出的每一轮RMSE的平均值。这个平均值可以告诉我们,模型在不同的数据子集上的平均表现如何,而且因为是RMSE,它是在原始数据的尺度上的,更加直观。一个较低的RMSECV意味着模型的预测误差较小,模型的预测性能较好。

(2)完整代码

        首先,用cross_val_score函数从sklearn.model_selection来实现交叉验证,并计算每个折叠的均方误差(MSE);然后,取均值并开平方根得到RMSECV;最后,绘图显示原始数据点和线性回归预测的结果并输出计算得到的RMSECV值。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score# 设置随机数种子,确保每次运行程序时生成的随机数据都是一样的
np.random.seed(0)# 模拟生成光谱数据,假设有波长这一个特征,和对应的光谱测量值,生成100个样本的数据集
X = np.random.rand(100, 1) * 100  # 波长特征,假设范围从0到100
y = 5 * X.squeeze() + np.random.randn(100) * 10  # 真实值加上一些随机噪声# 初始化线性回归模型
model = LinearRegression()# 这里的负数是因为cross_val_score默认计算的是负的均方误差
# 取负数再开方得到RMSECV
scores = cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=5)
rmsecv = np.sqrt(-scores.mean())# 训练模型,即找到最佳拟合线
model.fit(X, y)# 使用模型进行预测
y_pred = model.predict(X)# 绘制原始数据和预测结果的图表
plt.scatter(X, y, color='blue', label='Original Data')  # 原始数据点
plt.plot(X, y_pred, color='red', label='Prediction')  # 模型预测结果
plt.title(f'Linear Regression with RMSECV: {rmsecv:.2f}')  # 图表标题
plt.xlabel('Wavelength')  # x轴标签
plt.ylabel('Spectral Measurement')  # y轴标签
plt.legend()  # 显示图例
plt.show()  # 显示图表# 输出RMSECV值
print(f'The RMSECV (Root Mean Squared Error of Cross-Validation) is: {rmsecv:.2f}')

(3)运行结果

三、计算Clarke 误差网格

(1)定义介绍

       Clarke误差网格是一种图形工具,它帮助我们理解两组测量数据之间的关系。想象一下,你有一个理想的测量设备,它总是能够给出完美的结果。现在,你用一个真实的设备去测量同样的东西,并得到了一系列的结果。你想知道这个真实设备测量的准确度如何。

这时候,Clarke误差网格就派上用场了。这个网格将图表分成了几个区域,每个区域都对应着不同级别的准确度:

  • A区:这里的数据点表示真实设备的测量结果与理想设备非常接近,也就是说测量非常准确。
  • B区:数据点在这里意味着真实设备的测量结果虽然不完美,但误差在可接受范围内。
  • C区:在这个区域的数据点表明测量结果有一定的误差,这可能会导致一些问题。
  • D区和E区:这两个区域的数据点表示真实设备的测量结果与理想设备相差很远,可能会造成严重的后果。

        通过查看数据点在这个网格上的分布,我们可以快速判断出设备的测量准确性。如果大多数数据点都在A区,那么这个设备就是非常可靠的。如果数据点散布在C、D或E区,那么这个设备可能就不适合用于重要的测量任务。

        简而言之,Clarke误差网格就像是一个成绩报告卡,它告诉你设备的表现如何,帮助你决定是否可以信任这个设备的测量结果。

(2)完整代码

      计算Clarke 误差网格一般有以下四个步骤:

  1. 生成模拟数据:代码首先使用numpy库生成了两组数据。reference_values是一组均匀分布在0到300之间的100个数值,模拟理想情况下的光谱测量值。measured_values是在reference_values的基础上加上了正态分布的随机噪声(均值为0,标准差为10)生成的,模拟实际的光谱测量值。

  2. 定义绘制Clarke误差网格的函数plot_clarke_error_grid函数负责创建Clarke误差网格,并在网格上绘制模拟数据点。函数内部首先定义了Clarke误差网格的五个区域(A, B, C, D, E)的边界点。然后,利用matplotlib库中的fill函数根据这些边界点填充网格区域的颜色,并用scatter函数将模拟的数据点绘制在图表上。

  3. 设置图表属性:在函数中设定了图表的标题、x轴和y轴的标签、图例、坐标轴等比例(使x轴和y轴的刻度保持一致)、x轴和y轴的显示范围以及网格线。

  4. 显示结果:最后,调用plot_clarke_error_grid函数将模拟的参考值和测量值传入,运行函数以绘制并显示Clarke误差网格和数据点。结果是一个图表,显示了数据点在不同准确性区域的分布。

        完整代码如下:

import matplotlib.pyplot as plt
import numpy as np# 模拟生成光谱数据
np.random.seed(0)
reference_values = np.linspace(0, 300, 100)  # 参考光谱测量值
measured_values = reference_values + np.random.normal(0, 10, reference_values.shape)  # 实际光谱测量值,附加一些误差# 绘制Clarke误差网格
def plot_clarke_error_grid(reference, measured):# Clarke错误网格的临界点定义grid_points = {'A': [(0, 70), (0, 70), (70, 290), (70, 260), (130, 180), (180, 340), (260, 290), (340, 390)],'B': [(0, 70), (0, 55), (70, 70), (180, 70), (260, 115), (260, 70)],'C': [(70, 70), (180, 70), (240, 70), (240, 30), (70, 30)],'D': [(240, 70), (240, 30), (300, 0), (390, 0), (390, 70)],'E': [(260, 70), (390, 70), (390, 390), (260, 390)]}# 绘制Clarke误差网格区域for zone in grid_points:points = np.array(grid_points[zone])plt.fill(points[:, 0], points[:, 1], label=f'Zone {zone}')# 绘制数据点plt.scatter(measured, reference, marker='o')plt.title('Clarke Error Grid Analysis')plt.xlabel('Measured Concentration')plt.ylabel('Reference Concentration')plt.legend(loc='upper right')plt.axis('equal')plt.xlim(0, 400)plt.ylim(0, 400)plt.grid(True)plt.show()# 运行Clarke误差网格分析
plot_clarke_error_grid(reference_values, measured_values)

(3)运行结果

这篇关于光谱数据处理:2.数据准确度评价指标的Python计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745489

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取