pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

本文主要是介绍pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.`sor`统计滤波
          • 2.`Ransac`内点分割平面
          • 3.`Ransac`外点分割平面
      • 四、相关数据

一、算法原理

1、Ransac介绍
RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的是数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群点。所以,RANSAC也是一种“外点”检测算法。RANSAC算法是一种不确定算法,它只能在一种概率下产生结果,并且这个概率会随着迭代次数的增加而加大(之后会解释为什么这个算法是这样的)。

RANSAC主要解决样本中的外点问题,最多可处理50%的外点情况。

在这里插入图片描述
范例

可以简单总结为以下步骤:
N:样本个数 K:求解模型需要的最少的点的个数(对于直线拟合来说就是两个点,对于计算Homography矩阵就是四个点)

随机采样K个点
对该K个点拟合模型
计算其他点到拟合模型的距离。如果小于一定阈值,该点被当作内点,统计内点个数
重复M次,选择内点数最多的模型
利用所有的内点重新估计模型(可选)

RANSAC用于拟合直线:
1.随机选取K = 2 ,2个点:
在这里插入图片描述
2.拟合一条直线:
在这里插入图片描述
3.统计内点个数,内点为绿色,此时的内点个数为9(小于一定阈值计算为内点):
在这里插入图片描述
4.重复上述过程M次,找到内点数最大的模型(继续随机选点根据k=数目进行选点):
在这里插入图片描述
5.利用所有的内点重新估计直线:
在这里插入图片描述

二、代码

from pclpy import pcldef compareCloudShow(cloud1, cloud2):"""Args:在一个窗口生成2个窗口可视化点云cloud1: 点云数据1cloud2: 点云数据2"""viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewerv0 = 1  # 设置标签名(0, 1标记第一个窗口)viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色viewer.addPointCloud(cloud1,          # 要添加到窗口的点云数据。single_color,    # 指定点云的颜色"sample cloud1",  # 添加的点云命名v0)  # 点云添加到的视图v1 = 2  # 设置标签名(2代表第二个窗口)viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud2",  # 添加的点云命名v1)  # 点云添加到的视图# 设置点云窗口(可移除对点云可视化没有影响)viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud1",  # 识别特定点云v0)  # 在那个窗口可视化viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud2",  # 识别特定点云v1)  # 在那个窗口可视化viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0# 窗口建立while not viewer.wasStopped():viewer.spinOnce(10)if __name__ == '__main__':# 读取点云数据cloud = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()reader.read('res/table_scene_lms400.pcd', cloud)print('点云数目:', cloud.size())# 创建sor滤波器 参考 pclpy SOR去除异常值(统计滤波) pclpy专栏中cloud_filtered = pcl.PointCloud.PointXYZ()sor = pcl.filters.StatisticalOutlierRemoval.PointXYZ()  # 创建sor处理对象sor.setInputCloud(cloud)  # 将cloud处理sor.setMeanK(50)  # 每个点要分析的邻居数sor.setStddevMulThresh(1.0)  # 距离查询点的平均距离大于1个标准差的点都将被标记为离群值并删除sor.filter(cloud_filtered)  # sor处理后的点云保存在这里(内点)# 可视化滤波效果compareCloudShow(cloud, cloud_filtered)  # 参考 pclpy 可视化点云(多窗口可视化、单窗口多点云可视化) pclpy在专栏中coeffs = pcl.ModelCoefficients()  # 存储估计的平面参数inliers = pcl.PointIndices()  # 存储平面模型的内点索引# 创建分割objectseg = pcl.segmentation.SACSegmentation.PointXYZ()# 可选项seg.setOptimizeCoefficients(True)# 设置seg.setModelType(0)  # 0平面模型seg.setMethodType(0)  # 表示 RANSAC 算法  open3d 平面分割(Ransac算法) 专栏open3dseg.setMaxIterations(1000)  # 设置 RANSAC 算法的最大迭代次数为 1000。seg.setDistanceThreshold(0.01)  # 设置平面模型的距离阈值为 0.01,用于判断点是否为内点(inliers)# 创建滤波objectextract = pcl.filters.ExtractIndices.PointXYZ()nr_points = cloud_filtered.size()  # 获得点云数目while cloud_filtered.size() > nr_points * 0.3:# 从保留的点云中分割最大的平面成分seg.setInputCloud(cloud_filtered)  # 将滤波后的点云数据设置为分割器的输入seg.segment(inliers, coeffs)  # 分割后的内点索引保存在 inliers 中,将平面模型系数保存在 coeffsif len(inliers.indices) == 0:print('无法对给定数据集估计平面模型。')break# 提取内点(平面成分)extract.setInputCloud(cloud_filtered)  # 从点云中提取指定索引的点 和 open3d 中的select_index_by()一样extract.setIndices(inliers)  # 将计算索引进行装填extract.setNegative(False)  # 获得内点cloud_p = pcl.PointCloud.PointXYZ()extract.filter(cloud_p)# 可视化提取出来的平面compareCloudShow(cloud_filtered, cloud_p)print("点云数目:", cloud_p.size())# 再次滤波,提取外点(非平面成分)extract.setNegative(True)   # 获得外点cloud_f = pcl.PointCloud.PointXYZ()  extract.filter(cloud_f)cloud_filtered.swap(cloud_f)  # 等价于cloud_filtered = cloud_f

三、结果

1.sor统计滤波

在这里插入图片描述

2.Ransac内点分割平面

在这里插入图片描述

3.Ransac外点分割平面

在这里插入图片描述

四、相关数据

pclpy SOR去除异常值(统计滤波):pclpy SOR去除异常值(统计滤波)-CSDN博客

pclpy 可视化点云(多窗口可视化、单窗口多点云可视化):pclpy 可视化点云(多窗口可视化、单窗口多点云可视化)-CSDN博客

open3d 平面分割(Ransac算法) open3d 平面分割(Ransac算法)-CSDN博客
在这里插入图片描述

这篇关于pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745273

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

java -jar example.jar 产生的日志输出到指定文件的方法

《java-jarexample.jar产生的日志输出到指定文件的方法》这篇文章给大家介绍java-jarexample.jar产生的日志输出到指定文件的方法,本文给大家介绍的非常详细,对大家的... 目录怎么让 Java -jar example.jar 产生的日志输出到指定文件一、方法1:使用重定向1、

使用Python提取PDF大纲(书签)的完整指南

《使用Python提取PDF大纲(书签)的完整指南》PDF大纲(Outline)​​是PDF文档中的导航结构,通常显示在阅读器的侧边栏中,方便用户快速跳转到文档的不同部分,大纲通常以层级结构组织,包含... 目录一、PDF大纲简介二、准备工作所需工具常见安装问题三、代码实现完整代码核心功能解析四、使用效果控

Linux从文件中提取特定内容的实用技巧分享

《Linux从文件中提取特定内容的实用技巧分享》在日常数据处理和配置文件管理中,我们经常需要从大型文件中提取特定内容,本文介绍的提取特定行技术正是这些高级操作的基础,以提取含有1的简单需求为例,我们可... 目录引言1、方法一:使用 grep 命令1.1 grep 命令基础1.2 命令详解1.3 高级用法2

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a