图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现

本文主要是介绍图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考博文:Paper | Quality assessment of deblocked images - RyanXing - 博客园 (cnblogs.com)

像的阻挡效应因子(Blocking Effect Factor,BEF)。阻挡效应是指当图像被分割成块时,相邻块之间的边界会引入人眼可见的伪影。阻挡效应因子用于评估图像中阻挡效应的程度。

PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣)。

我们首先假设图像由整数个块(tiling)组成。例如:

 图中每一个块都是8×8的块,一共有64个。定义以下块类别:

分别代表:纵向接壤块边缘的像素对、纵向非接壤块边缘的像素对、横向接壤块边缘的像素对 和 横向非接壤块边缘的像素对。

定义两个指标:

前者代表块边缘变化强度,后者代表非块边缘(块内)变化强度。随着量化逐渐粗糙,前者的增大会明显快于后者。

还考虑一个因素:随着块增大,块效应也会逐渐明显。【反过来,如果块很小,那么远看是看不出块效应的】因此我们定义一个块效应因数(blocking effect factor, BEF):

 

 其中的η随着块尺寸的增大而增大:

 例如在H264压缩标准下,一张图像内可以有多种不同尺寸的块。此时就有:

 

 

 定义PSNR-B如下:

 

 阻挡效应因子(Blocking Effect Factor,BEF)代码实现

def _blocking_effect_factor(im):  # 计算了图像的阻挡效应因子(Blocking Effect Factor,BEF)'''阻挡效应是指当图像被分割成块时,相邻块之间的边界会引入人眼可见的伪影。阻挡效应因子用于评估图像中阻挡效应的程度。Args:im:输入的图片Returns:计算了图像的阻挡效应因子'''block_size = 8# im是一个四维的数组,代表输入的图像。通常,它的形状是(height, width, channels, frames),表示图像的高度、宽度、通道数和帧数block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)  # 定义了一个块的大小为8个像素block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)horizontal_block_difference = ((im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(3).sum(2).sum(1)  # 计算图像中水平方向上相邻像素之差的平方vertical_block_difference = ((im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(2).sum(1)  # 计算图像中竖直方向上相邻像素之差的平方nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)horizontal_nonblock_difference = ((im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(3).sum(2).sum(1)vertical_nonblock_difference = ((im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(3).sum(2).sum(1)# np.setdiff1d()函数来找到两个数组之间的差异,然后计算了图像中水平和垂直方向上非块(non-block)位置的像素差值的平方和n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)boundary_difference = (horizontal_block_difference + vertical_block_difference) / (n_boundary_horiz + n_boundary_vert)n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horizn_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vertnonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (n_nonboundary_horiz + n_nonboundary_vert)scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))bef = scaler * (boundary_difference - nonboundary_difference)bef[boundary_difference <= nonboundary_difference] = 0return bef

PSNR-B代码实现

def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):"""Calculate PSNR-B (Peak Signal-to-Noise Ratio).Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.pyArgs:img1 (ndarray): Images with range [0, 255].img2 (ndarray): Images with range [0, 255].crop_border (int): Cropped pixels in each edge of an image. Thesepixels are not involved in the PSNR calculation.input_order (str): Whether the input order is 'HWC' or 'CHW'.Default: 'HWC'.test_y_channel (bool): Test on Y channel of YCbCr. Default: False.Returns:float: psnr result."""assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')if input_order not in ['HWC', 'CHW']:raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')img1 = reorder_image(img1, input_order=input_order)  # 调整图片维度顺序为HWCimg2 = reorder_image(img2, input_order=input_order)img1 = img1.astype(np.float64)  # 图片类型转换img2 = img2.astype(np.float64)if crop_border != 0:img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]  # 去除图片的边缘像素img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]if test_y_channel:img1 = to_y_channel(img1)  # Y通道颜色空间转换img2 = to_y_channel(img2)# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.pyimg1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.# torch.from_numpy(img1)将NumPy数组img1转换为PyTorch张量,unsqueeze(0)将张量的维度扩展一个单位,以添加一个虚拟的批次维度# permute(2, 0, 1)用于对张量进行维度重排,将原始图像的通道维度从最后一维移动到第一维,# 行维度移动到第二维,列维度移动到第三维。这是为了与PyTorch默认的通道维度顺序(即[batch_size, channel, height, width])保持一致# img1和img2被转换为形状为[1, channel, height, width]的PyTorch张量,并且它们的值被归一化到0到1之间total = 0for c in range(img1.shape[1]):  # img1.shape[1]是通道的数量mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')# 计算均方误差(Mean Square Error,简称MSE)损失。它用于衡量模型的预测结果与目标值之间的差异bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])  # 计算阻塞效应因子的临时结果befmse = mse.view(mse.shape[0], -1).mean(1)# 调整mse的形状,将其转换为二维张量,其中每一行表示一个样本(这里只有一个样本),每一列表示样本的一个特征total += 10 * torch.log10(1 / (mse + bef))return float(total) / img1.shape[1]

 

这篇关于图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/wqq112692/article/details/135598478
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/744818

相关文章

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意