图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现

本文主要是介绍图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考博文:Paper | Quality assessment of deblocked images - RyanXing - 博客园 (cnblogs.com)

像的阻挡效应因子(Blocking Effect Factor,BEF)。阻挡效应是指当图像被分割成块时,相邻块之间的边界会引入人眼可见的伪影。阻挡效应因子用于评估图像中阻挡效应的程度。

PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣)。

我们首先假设图像由整数个块(tiling)组成。例如:

 图中每一个块都是8×8的块,一共有64个。定义以下块类别:

分别代表:纵向接壤块边缘的像素对、纵向非接壤块边缘的像素对、横向接壤块边缘的像素对 和 横向非接壤块边缘的像素对。

定义两个指标:

前者代表块边缘变化强度,后者代表非块边缘(块内)变化强度。随着量化逐渐粗糙,前者的增大会明显快于后者。

还考虑一个因素:随着块增大,块效应也会逐渐明显。【反过来,如果块很小,那么远看是看不出块效应的】因此我们定义一个块效应因数(blocking effect factor, BEF):

 

 其中的η随着块尺寸的增大而增大:

 例如在H264压缩标准下,一张图像内可以有多种不同尺寸的块。此时就有:

 

 

 定义PSNR-B如下:

 

 阻挡效应因子(Blocking Effect Factor,BEF)代码实现

def _blocking_effect_factor(im):  # 计算了图像的阻挡效应因子(Blocking Effect Factor,BEF)'''阻挡效应是指当图像被分割成块时,相邻块之间的边界会引入人眼可见的伪影。阻挡效应因子用于评估图像中阻挡效应的程度。Args:im:输入的图片Returns:计算了图像的阻挡效应因子'''block_size = 8# im是一个四维的数组,代表输入的图像。通常,它的形状是(height, width, channels, frames),表示图像的高度、宽度、通道数和帧数block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)  # 定义了一个块的大小为8个像素block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)horizontal_block_difference = ((im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(3).sum(2).sum(1)  # 计算图像中水平方向上相邻像素之差的平方vertical_block_difference = ((im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(2).sum(1)  # 计算图像中竖直方向上相邻像素之差的平方nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)horizontal_nonblock_difference = ((im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(3).sum(2).sum(1)vertical_nonblock_difference = ((im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(3).sum(2).sum(1)# np.setdiff1d()函数来找到两个数组之间的差异,然后计算了图像中水平和垂直方向上非块(non-block)位置的像素差值的平方和n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)boundary_difference = (horizontal_block_difference + vertical_block_difference) / (n_boundary_horiz + n_boundary_vert)n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horizn_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vertnonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (n_nonboundary_horiz + n_nonboundary_vert)scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))bef = scaler * (boundary_difference - nonboundary_difference)bef[boundary_difference <= nonboundary_difference] = 0return bef

PSNR-B代码实现

def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):"""Calculate PSNR-B (Peak Signal-to-Noise Ratio).Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.pyArgs:img1 (ndarray): Images with range [0, 255].img2 (ndarray): Images with range [0, 255].crop_border (int): Cropped pixels in each edge of an image. Thesepixels are not involved in the PSNR calculation.input_order (str): Whether the input order is 'HWC' or 'CHW'.Default: 'HWC'.test_y_channel (bool): Test on Y channel of YCbCr. Default: False.Returns:float: psnr result."""assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')if input_order not in ['HWC', 'CHW']:raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')img1 = reorder_image(img1, input_order=input_order)  # 调整图片维度顺序为HWCimg2 = reorder_image(img2, input_order=input_order)img1 = img1.astype(np.float64)  # 图片类型转换img2 = img2.astype(np.float64)if crop_border != 0:img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]  # 去除图片的边缘像素img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]if test_y_channel:img1 = to_y_channel(img1)  # Y通道颜色空间转换img2 = to_y_channel(img2)# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.pyimg1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.# torch.from_numpy(img1)将NumPy数组img1转换为PyTorch张量,unsqueeze(0)将张量的维度扩展一个单位,以添加一个虚拟的批次维度# permute(2, 0, 1)用于对张量进行维度重排,将原始图像的通道维度从最后一维移动到第一维,# 行维度移动到第二维,列维度移动到第三维。这是为了与PyTorch默认的通道维度顺序(即[batch_size, channel, height, width])保持一致# img1和img2被转换为形状为[1, channel, height, width]的PyTorch张量,并且它们的值被归一化到0到1之间total = 0for c in range(img1.shape[1]):  # img1.shape[1]是通道的数量mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')# 计算均方误差(Mean Square Error,简称MSE)损失。它用于衡量模型的预测结果与目标值之间的差异bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])  # 计算阻塞效应因子的临时结果befmse = mse.view(mse.shape[0], -1).mean(1)# 调整mse的形状,将其转换为二维张量,其中每一行表示一个样本(这里只有一个样本),每一列表示样本的一个特征total += 10 * torch.log10(1 / (mse + bef))return float(total) / img1.shape[1]

 

这篇关于图像的阻挡效应因子(Blocking Effect Factor,BEF)和PSNR-B指标原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744818

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja