Modern C++ std::variant的实现原理

2024-02-24 19:36

本文主要是介绍Modern C++ std::variant的实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

std::variant是C++17标准库引入的一种类型,用于安全地存储和访问多种类型中的一种。它类似于C语言中的联合体(union),但功能更为强大。与联合体相比,std::variant具有类型安全性,可以判断当前存储的实际类型,并且可以存储结构体/类等复杂的数据结构。

2. preview 原理

我们依然采用“一图胜千言”的思想,给大家先展现下std::variant对应的UML图。这些图都是用我之前写的工具DotObject自动画出来的,有兴趣请参考《GDB调试技巧实战–自动化画出类关系图》,还有一篇应用实践《Modern C++利用工具快速理解std::tuple的实现原理》。
我们先举个简单的例子, 看下variant的庐山真面目。

std::variant<int,double>

请添加图片描述

3. std::variant的实现重点:存储

通过上面的preview,相信读者已经通过直观的认识快速入门并理解了底层是如何存储数据的了。
解释一下
(1)重点是_Variadic_union, 它是一个递归union,大概相当于c中的:

union _Variadic_union{数据  _M_first; //第N层的_Variadic_union  _M_rest;  //下一层还是一个union
}

(2) 另一个重点是:_Variant_storage::_M_index 是当前数据类型是可选类型列表中第几个,比如设置一个0.2,则当前类型是double, 此时_M_index=1(从0开始)。

下面我们用GDB把数据打印出来看看:

variant<int,double> v1(3);

请添加图片描述
再赋值为2.0

v1 = 2.0;

在这里插入图片描述
在有了直观认识后,我们来看下源代码:

 348   template<typename... _Types>349     union _Variadic_union { };350351   template<typename _First, typename... _Rest>352     union _Variadic_union<_First, _Rest...>353     {354       constexpr _Variadic_union() : _M_rest() { }355356       template<typename... _Args>357     constexpr _Variadic_union(in_place_index_t<0>, _Args&&... __args)358     : _M_first(in_place_index<0>, std::forward<_Args>(__args)...)359     { }360361       template<size_t _Np, typename... _Args>362     constexpr _Variadic_union(in_place_index_t<_Np>, _Args&&... __args)363     : _M_rest(in_place_index<_Np-1>, std::forward<_Args>(__args)...)364     { }365366       _Uninitialized<_First> _M_first;367       _Variadic_union<_Rest...> _M_rest;368     };

先不必管行356到364(问题一,这几行干啥用?),367行体现了递归的思想(递归在标准库实现中大量使用),每次都把第一个值单独拿出来。如果理解有困难,直接扔到cppinsights让它帮我们展开(为了方便cppinsights展开,我把_M_first先简化为_First类型了,之后再详细分析它):
在这里插入图片描述
可以看到
_Variadic_union<int,double> = int _M_first + _Variadic_union _M_rest
_Variadic_union = double _M_first + _Variadic_union<>
OK, _M_rest是为了递归,那 _M_first 哪?当然,大家已经看到它对应每层的数据(int/double),不过它的实际类型是 _Uninitialized,在我们的例子中分别对应只包含int或double的结构体,
在这里插入图片描述
不要简单的以为_Uninitialized总是“类型 _M_storage”, 看下存结构体或类会怎么样?

class Person{public:Person(const string& name, int age):_name(name),_age(age){}~Person(){cout<<"Decons Person:";print();}void print(){cout<<"name="<<_name<<" age="<<_age<<endl;}private:string _name;int _age;
};
int main(){variant<int,Person> v2;
}

请添加图片描述
可见它把Person变成了char[40], 40恰为Person的size大小。
让我们看下**_Uninitialized**的定义:

 227   // _Uninitialized<T> is guaranteed to be a trivially destructible type,228   // even if T is not.229   template<typename _Type, bool = std::is_trivially_destructible_v<_Type>>230     struct _Uninitialized;231232   template<typename _Type>233     struct _Uninitialized<_Type, true>234     {235       template<typename... _Args>236     constexpr237     _Uninitialized(in_place_index_t<0>, _Args&&... __args)238     : _M_storage(std::forward<_Args>(__args)...)239     { }240241       constexpr const _Type& _M_get() const & noexcept242       { return _M_storage; }243244       constexpr _Type& _M_get() & noexcept245       { return _M_storage; }246247       constexpr const _Type&& _M_get() const && noexcept248       { return std::move(_M_storage); }249250       constexpr _Type&& _M_get() && noexcept251       { return std::move(_M_storage); }252253       _Type _M_storage;254     };255256   template<typename _Type>257     struct _Uninitialized<_Type, false>258     {259       template<typename... _Args>260     constexpr261     _Uninitialized(in_place_index_t<0>, _Args&&... __args)262     {263       ::new ((void*)std::addressof(_M_storage))264         _Type(std::forward<_Args>(__args)...);265     }266267       const _Type& _M_get() const & noexcept268       { return *_M_storage._M_ptr(); }269270       _Type& _M_get() & noexcept271       { return *_M_storage._M_ptr(); }272273       const _Type&& _M_get() const && noexcept274       { return std::move(*_M_storage._M_ptr()); }275276       _Type&& _M_get() && noexcept277       { return std::move(*_M_storage._M_ptr()); }278279       __gnu_cxx::__aligned_membuf<_Type> _M_storage;280     };

很明显,针对is_trivially_destructible_v是true、false各有一个特化,type为Person时命中_Uninitialized<_Type, false>(因为它有自己定义的析构函数,故is_trivially_destructible_v==false, 细节请参考下面的截图)

这里是引用

4. std::variant的实现重点:get(获取值)

存是递归,取也是递归取
给出任意一个variant object, 比如v1, 我们知道

  1. 数据类型对应的下标是v1._M_index
  2. 数据存在v1._M_u
    则要想获得第一个数据类型的值只需return v1._M_u._M_first
    要想获得第二个数据类型的值只需return v1._M_u._M_rest._M_first
    要想获得第三个数据类型的值只需return v1._M_u._M_rest._M_rest._M_first
    … …
    这正是源代码的实现方式:
282   template<typename _Union>283     constexpr decltype(auto)  //获得第一个数据类型的值  我们的例子中是int284     __get(in_place_index_t<0>, _Union&& __u) noexcept285     { return std::forward<_Union>(__u)._M_first._M_get(); }286287   template<size_t _Np, typename _Union>288     constexpr decltype(auto)  //获得第N个数据类型的值  我们的例子中第二个是double289     __get(in_place_index_t<_Np>, _Union&& __u) noexcept290     {291       return __variant::__get(in_place_index<_Np-1>,  //递归292                   std::forward<_Union>(__u)._M_rest);293     }294295   // Returns the typed storage for __v.296   template<size_t _Np, typename _Variant>297     constexpr decltype(auto)298     __get(_Variant&& __v) noexcept299     {300       return __variant::__get(std::in_place_index<_Np>,301                   std::forward<_Variant>(__v)._M_u);302     }

对照上面的实现想一想下面的代码如何运行的?

variant<int,double> v(1.0);
cout<<get<1>(v);

这个哪?

std::variant<int, double, char, string> myVariant("mzhai");
string s = get<3>(myVariant);

需要很多次._M_rest对不? 所以如果你非常看重效率,那么请把常用的类型安排在前面,比如把上面的代码改成:

std::variant<string, int, double, char> myVariant("mzhai");

后来注释,这是debug的情况,开启优化后没有性能问题。 请参考 《Modern C++ std::variant 我小看了get的速度》。

5. std::variant的实现重点:赋值

赋值大体有三种办法:

  1. 初始化(调用构造函数)
  2. 重新赋值 (调用operator = )
  3. 重新赋值 (调用emplace)

但赋值很复杂,因为情况很多:

  1. variant alternatives都是int般简单类型,=右边也是简单类型
  2. variant alternatives都是trivial类,=右边也是trivial类
  3. variant alternatives都是非trivial类,=右边也是非trivial类
  4. variant alternatives都是非trivial类,=右边是构造非trivial类的参数
  5. variant alternatives都是非trivial类,而且有些类的ctor或mtor或assignment operator被删除
  6. copy assignment/ move assignment 会抛异常导致valueless

  7. 情况多的不厌其烦。头大。
    我们只挑最简单的说下(捏个软柿子~), 考虑如下代码:
std::variant<int, double> v;
v = 2.0f;

对应的实现为:

1456       template<typename _Tp>
1457     enable_if_t<__exactly_once<__accepted_type<_Tp&&>>
1458             && is_constructible_v<__accepted_type<_Tp&&>, _Tp>
1459             && is_assignable_v<__accepted_type<_Tp&&>&, _Tp>,
1460             variant&>
1461     operator=(_Tp&& __rhs)
1462     noexcept(is_nothrow_assignable_v<__accepted_type<_Tp&&>&, _Tp>
1463          && is_nothrow_constructible_v<__accepted_type<_Tp&&>, _Tp>)
1464     {
1465       constexpr auto __index = __accepted_index<_Tp>;
1466       if (index() == __index)   //index()为0,因为初始化v时以int初始化,__index为1//这种情况对应的是前面那次赋值和这次赋值类型一样。比如v=1.0; v=2.0
1467         std::get<__index>(*this) = std::forward<_Tp>(__rhs);
1468       else
1469         {//前后两次赋值类型不一样,比如v=1; v=2.0.  本例v=2.0f走这里。
1470           using _Tj = __accepted_type<_Tp&&>;
1471           if constexpr (is_nothrow_constructible_v<_Tj, _Tp>
1472                 || !is_nothrow_move_constructible_v<_Tj>)
1473         this->emplace<__index>(std::forward<_Tp>(__rhs));//本例走这
1474           else
1475         operator=(variant(std::forward<_Tp>(__rhs)));
1476         }
1477       return *this;
1478     }1499       template<size_t _Np, typename... _Args>
1500     enable_if_t<is_constructible_v<variant_alternative_t<_Np, variant>,
1501                        _Args...>,
1502             variant_alternative_t<_Np, variant>&>
1503     emplace(_Args&&... __args)
1504     {
1505       static_assert(_Np < sizeof...(_Types),
1506             "The index must be in [0, number of alternatives)");
1507       using type = variant_alternative_t<_Np, variant>;
1508       namespace __variant = std::__detail::__variant;
1509       // Provide the strong exception-safety guarantee when possible,
1510       // to avoid becoming valueless.
1511       if constexpr (is_nothrow_constructible_v<type, _Args...>)
1512         {
1513           this->_M_reset();  //析构原对象,并置_M_index=-1
1514           __variant::__construct_by_index<_Np>(*this, //placement new,构造新值
1515           std::forward<_Args>(__args)...);
1516         }
1517       else if constexpr (is_scalar_v<type>)
1518         {
1519           // This might invoke a potentially-throwing conversion operator:
1520           const type __tmp(std::forward<_Args>(__args)...);
1521           // But these steps won't throw:
1522           this->_M_reset();
1523           __variant::__construct_by_index<_Np>(*this, __tmp);
1524         }
1525       else if constexpr (__variant::_Never_valueless_alt<type>()
1526           && _Traits::_S_move_assign)

析构原来的类型对象和构造新的类型对象请分别参考_M_reset __construct_by_index

 422       void _M_reset()423       {424     if (!_M_valid()) [[unlikely]]425       return;426427     std::__do_visit<void>([](auto&& __this_mem) mutable428       {429         std::_Destroy(std::__addressof(__this_mem));430       }, __variant_cast<_Types...>(*this));431432     _M_index = static_cast<__index_type>(variant_npos);433       }1092   template<size_t _Np, typename _Variant, typename... _Args>
1093     inline void
1094     __construct_by_index(_Variant& __v, _Args&&... __args)
1095     {
1096       auto&& __storage = __detail::__variant::__get<_Np>(__v);
1097       ::new ((void*)std::addressof(__storage))
1098         remove_reference_t<decltype(__storage)>
1099       (std::forward<_Args>(__args)...);
1100       // Construction didn't throw, so can set the new index now:
1101       __v._M_index = _Np;
1102     }

赋值原理基本大体如此,如有读者感觉意犹未尽,这里我给一个程序供大家调试研究思考:

#include<iostream>
#include<variant>
using namespace std;int main(){class C1{public:C1(int i):_i(i){}private:int _i;};cout<<is_nothrow_constructible_v<C1><<endl;cout<<is_nothrow_move_constructible_v<C1><<endl;variant<string, C1> v;v = 10; //重点在这里return 0;
}

提示:

  1. 没走emplace, 走了1475 operator=(variant(std::forward<_Tp>(__rhs)));
  2. 还记得上面我们留了一个问题吗?

先不必管行356到364(问题一,这几行干啥用?

本例调用了362的构造函数 constexpr _Variadic_union(in_place_index_t<_Np>, _Args&&… __args)
这个构造函数就是为类类型(有parameterized constructor)准备的。

这篇关于Modern C++ std::variant的实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743142

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库