斐波拉契搜索(费氏搜寻法)分析与实现

2024-02-24 18:30

本文主要是介绍斐波拉契搜索(费氏搜寻法)分析与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要说斐波拉契搜索就必须要先说一下什么 是斐波拉契数列:

斐波拉契数列:
F(1)=1,
F(2)=1,
F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
就是从第三项开始,每一项都等于前两项的和。

费氏搜寻法简介:
费氏搜寻法,就是利用斐波拉契数列从有序数列中搜寻特定元素的一种搜索算法,它的前提是数列必须要有序。我们熟悉的二分查询,每次搜寻的时候,都会讲区间分为两半,所以其搜寻时间为O(log(2)n),这边要介绍的费氏搜索,其利用费氏数列中的数作为间隔来搜寻下一个数,所以区间收敛的速度会更快,搜索时间为O(logn)。

用一个例子来说明:

查询的数组:num[]
0 0 1 1 1 2 2 2 3 5 6 7 8 8 9
斐波拉契数列:F[]
1 1 2 3 5 8 13 21…

现在假定我们查询的数字是:find=7.
方便计算,我们的num[]和F[]的数组下标都从1开始。
首先,可以知道数组num长度n=15,先找到(尽可能大的)小于等于15的F[x]=13,他的下标x=7,此时还需要一个公式:F[x]+m=n,所以m=15-13=2;
x,m,F[x]在一开始数组长度知道的情况下就可以知道了。

第一次搜索:
不是从x=7,开始查询的,而是x–,i=x=6开始查询的,如果num[6]<7,这时候,i+=m,第二次搜索的时候就从第8个开始。(如果num[6]>7,则i是i-=F[x])
i=6 num[6]=2<7 i+=2

第二次搜索:
第二次搜索就从上一次 得出的i=8开始搜索,这时候,num[8]=2<7,这时候i的变化不再是加减m了,而是加减斐波拉契数列的值(F[x])了。num[i]小于我们要查找的数值,i就加斐波拉契数列的值,反之则减.
i=8 num[8]=2<7 i+=F[–x] 即i+=F[5] i=8+5=13

第三次搜索

i=13 num[13]=8>7 i-=F[–x] 即i-=F[4] i=13-3=10

第四次搜索:
i=10 num[10]=5<7 i+=F[–x] 即i+=F[3] i=10+2=12

第五次搜索:
i=12 num[12]=7 这样就找到我们要查找的数值7,他是索引12.

总结:
费氏搜寻会先透过公式计算求出第一个要搜寻数的位置,F[x]+m=n,计算出F[x],m,x的值,用费氏数列作为间隔来搜寻下一个数,区间收敛的速度更快,同时本身只会用到加减法,在运算上也可以加快。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX 15
#define SWAP(x,y) {int t; t = x; x = y; y = t;}void createfib(void);               // 建立费氏数列
int findx(int);                     // 找x值
int fibsearch(int[], int);          // 费氏搜寻
void quicksort(int[], int, int);    // 快速排序int Fib[MAX] = {-999};//主程序(C/OC)int main(void){int number[MAX] = {0};
int i, find;srand(time(NULL));for(i = 1; i <= MAX; i++) {     //产生随机数列number[i] = rand() % 10;
}quicksort(number, 1, MAX);      //快速排序printf("数列:");                //打印排序后的数列
for(i = 1; i <= MAX; i++)printf("%d ", number[i]);
find = 7;                      //要寻找的对象
if((i = fibsearch(number, find)) >= 0)printf("找到数字于索引 %d ", i);
elseprintf("\n找不到指定数");printf("\n"); 
}
//建立费氏数列,总共求得MAX+1个斐波那契数
void createfib(void) {int i;Fib[0] = 0;Fib[1] = 1;for(i = 2; i < MAX; i++)Fib[i] = Fib[i-1] + Fib[i-2];
}//找x值
int findx(int n) {int i = 0;while(Fib[i] <= n)i++;i--;return i;//找到第i个Fib元素小于等于MAX+1
}//费式搜寻
int fibsearch(int number[], int find) {int i, x, m;createfib();                    //创建斐波那契数列x  = findx(MAX+1);              //斐波那契数列中第x个数刚好不大于MAX+1。MAX是确定的,所以比较的起始点是确定的。m = MAX - Fib[x];               //得到一个较小的差值。m的值也是确定的。printf("\nx = %d, m = %d, Fib[x] = %d\n\n",x, m, Fib[x]);x--;i = x;if(number[i] < find)            //i的初值也是确定的。i += m;while(Fib[x] > 0) {             //搜寻,x值不断减小,范围越来越小,搜寻越来越精细if(number[i] < find)        //小于被搜寻的值i += Fib[--x];          //右移搜寻位置else if(number[i] > find)   //大于被搜寻值i -= Fib[--x];          //左移搜寻位置elsereturn i;               //相等,找到}return -1;                      //搜寻步子已经最小,还是没找到,搜寻结束
}//快速排序
void quicksort(int number[], int left, int right) {int i, j, k, s;if(left < right) {s = number[(left+right)/2];i = left - 1;j = right + 1;while(1) {while(number[++i] < s) ;        // 向右找while(number[--j] > s) ;        // 向左找if(i >= j)break;SWAP(number[i], number[j]);}quicksort(number, left, i-1);       // 对左边进行递回quicksort(number, j+1, right);      // 对右边进行递回} 
} 

运行结果:
在这里插入图片描述

这篇关于斐波拉契搜索(费氏搜寻法)分析与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742977

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配