一项关于睡眠健康数据集的探索

2024-02-24 12:59

本文主要是介绍一项关于睡眠健康数据集的探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

睡眠占据人生三分之一的时间,关于睡眠健康方向的研究数不胜数,今天海文集团教研团队带来的是一项通过数据分析研究睡眠质量与生活习惯间的关联的研究内容。


一、项目背景


1、背景描述
本数据集涵盖了与睡眠和日常习惯有关的诸多变量。如性别、年龄、职业、睡眠时间、睡眠质量、身体 活动水平、压力水平、BMI类别、血压、心率、每日步数、以及是否有睡眠障碍等细节。
2、数据说明
解释说明:睡眠障碍

类型说明
没有表现出任何特定的睡眠障碍
失眠有入睡或保持睡眠的困难,导致睡眠不足或质量差
睡眠呼吸暂停在睡眠过程中出现呼吸暂停,导致睡眠模式紊乱和潜在的健康风险

3、数据来源
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
4、问题描述
全面的睡眠指标:探索睡眠时间、质量和影响睡眠模式的因素。
生活方式因素:分析身体活动水平、压力水平和BMI类别。
心血管健康:检查血压和心率测量。
睡眠障碍分析:识别睡眠障碍的发生,如失眠和睡眠呼吸暂停。


二、数据清洗及概览


In [21] :

import numpy as np
import pandas as pdfrom sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_scoreimport matplotlib.pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Bar,Tab,HeatMap
#Tab报错可以用新的pyecharts版本,我这个pyecharts的版本为1.9

In [22] :

data =
pd.read_csv('/home/mw/input/data1581/Sleep_health_and_lifestyle_dataset.csv',enc oding='gbk')
print(data.shape)
data.head()

(374, 13)

Out [22]:

In [23] :

data['收缩压'] = data['血压'].apply(lambda x:int(x[:3]))
data['舒张压'] = data['血压'].apply(lambda x:int(x[4:]))
data['性别'] = data['性别'].apply(lambda x:1 if x=='男性' else 0)

Out [24] :

data.describe()
#根据结果可以看出,无缺失值,且暂无异常值

PS :2022年11月13日,首部《中国高血压临床实践指南》发布。推荐将我国成人高血压诊断界值下调为收缩压大于等于130毫米汞柱和/或舒张压大于等于80毫米汞柱,一般称血压低于90/60 mmHg的情形为低血压

根据上方表格来看,受访者中没有低血压患者,但存在高血压的患者,因此新找一列区分 。

In [25] :

data['是否高血压'] = 0
data.loc[(data['收缩压']>130)&(data['舒张压']>80),'是否高血压'] = 1
data['是否高血压'].mean()
#可以看出有28%的人有高血压

Out [25] :

0.28609625668449196

#查看各类离散值的取值类型有哪些
from sklearn.preprocessing import OrdinalEncoder         
OrdinalEncoder().fit(data.iloc[:,[1,3,8,12]]).categories_

Out [26] :

[array([0, 1]),
array(['主管', '会计师', '医生', '工程师', '律师', '护士', '科学家', '老师', '营业员', '软件工程师', '销售代表'], dtype=object),
array(['正常', '肥胖', '超重'], dtype=object),
array(['失眠', '无', '睡眠呼吸暂停'], dtype=object)]

In [27] :

data['睡眠障碍'].value_counts()/data.shape[0]

Out [27] :

无 0.585561

睡眠呼吸暂停 0.208556

失眠 0.205882

Name: 睡眠障碍, dtype: float64


三、数据分析


In [28] :

getTab(data[~data['职业'].isin(['主管 ','科学家 ','销售代表','软件工程师'])],'职业'

Out [28] :

不同职业各指标的对比图,由于部分职业人数很少不太具有代表性 ,因此把【'主管','科学家','销售代表','软件工程师'】的记录进行剔除,根据结果可以得出以下结论:

  • 在性别中,除了工程师性别比为49%外,其余职业基本偏向一边 ,如医生、律师、营业员基本全为男生,会计师、护士和老师则基本为女生;
  • 在是否高血压中,可以发现,医生里高血压占比仅6% ,而同为医疗职业的护士则高达92%。
  • 工程师的压力水平最小,平均心率最低,睡眠时长和睡眠质量最高
  • 而营业员的压力水平最大,平均心率最高,全为男性且有高血压,睡眠时长及质量都最差,身体活动水平最低...

珍爱生命,远离营业员...(仅针对本数据得出此结果/(ㄒoㄒ)/~~ )
不同BMI 各指标 的对比图,可以看出:

  • 正常体重的受访者压力水平明显低于其余受访者;
  • 超重的受访者平均年龄较高,为47.89 ;
  • 超重的女性占比明显高于男性,达到72% ;
  • BMI正常的受访者的人基本没有高血压;
  • 超重和肥胖的受访者睡眠时长和睡眠质量均明显低于BMI正常的;
  • 超重和正常的受访者平均步数基本一致,但身体活动水平明显高于其他(那为什么会超重???)

是否睡眠障碍的各指标对比图,可以看出:

  • 没有睡眠障碍的受访者平均的压力水平、年龄、心率、收缩压、舒张压、高血压比例均低于其他失眠或睡眠呼吸暂停的患者
  • 而男性占比、睡眠时长及睡眠质量高于其余患者,且每日步数和身体活动水平处于中间
  • 高血压患者在失眠和睡眠呼吸暂停的患者里占比高达 96% 明显大于无睡眠障碍的受访者中高血压的占比( 32% )
  • 从性别上看,失眠患者中性别比例接近1 :1 ,但是在睡眠呼吸暂停的患者里, 女生明显多于男性

初步结论是,每日的适当运动有助于睡眠,而过多的运动可能会导致睡眠呼吸暂停


四、模型预测


In [29] :

data['BMI_'] = OrdinalEncoder().fit_transform(data['BMI'].values.reshape(-1, 1))
X = data.loc[:,~data.columns.isin(['ID','血压','睡眠障碍','职业','BMI'])] Y = data['睡眠障碍'].ravel()
xtrain,xtest,ytrain,ytest = train_test_split(X,Y,test_size=0.3)

In [30] :

score_modellist = []
#存储各个模型的准确度

1、决策树

In [31] :

from sklearn.tree import DecisionTreeClassifier as DTC
tr = []
te = []
for i in range(10):
clf = DTC(random_state=1,max_depth=i+1)
clf = clf.fit(xtrain,ytrain)
score_tr = clf.score(xtrain,ytrain)
score_te = cross_val_score(clf,X,Y,cv=10).mean()
tr.append(score_tr)
te.append(score_te)
print(max(te))
plt.plot(range(1,11),tr,color='red',label='train')
plt.plot(range(1,11),te,color='blue',label='test')
plt.xticks(range(1,11))
plt.legend()
plt.show()
score_modellist.append(max(te))

0.8858463726884779

2、随机森林
In [32] :

from sklearn.tree import DecisionTreeClassifier as DTC
tr = []
te = []
for i in range(10):
clf = DTC(random_state=1,max_depth=i+1)
clf = clf.fit(xtrain,ytrain)
score_tr = clf.score(xtrain,ytrain)
score_te = cross_val_score(clf,X,Y,cv=10).mean()
tr.append(score_tr)
te.append(score_te)
print(max(te))
plt.plot(range(1,11),tr,color='red',label='train')
plt.plot(range(1,11),te,color='blue',label='test')
plt.xticks(range(1,11))
plt.legend()
plt.show()
score_modellist.append(max(te))

0.8990753911806543

3SVM
In [33] :

from sklearn.svm import SVC
sv_clf = SVC(gamma='auto')
sv_clf.fit(xtrain, ytrain)
print(cross_val_score(sv_clf,X,Y,cv=10).mean())
score_modellist.append(cross_val_score(sv_clf,X,Y,cv=10).mean())

0.8184210526315789
4、 KNN
In [34] :

from sklearn.neighbors import KNeighborsClassifier
kn_clf = KNeighborsClassifier(n_neighbors=6)
kn_clf.fit(xtrain, ytrain)
print(cross_val_score(kn_clf,X,Y,cv=10).mean())
score_modellist.append(cross_val_score(kn_clf,X,Y,cv=10).mean())

0.8615220483641537
5、模型对比
Out [29] :

由于决策树与随机森林结果接近,因此对决策树进行可视化,查看影响睡眠的因素。
Out [30] :

这篇关于一项关于睡眠健康数据集的探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742181

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语