基于未来搜索算法的函数寻优算法

2024-02-24 08:50

本文主要是介绍基于未来搜索算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、未来搜索算法
      • (1)算法初始化
      • (2)局部解和全局最优解
      • (3)定义新解
      • (4)更新随机初始值
    • 2、FSA算法流程图
  • 二、仿真实验与结果分析
  • 三、参考文献

一、理论基础

1、未来搜索算法

未来搜索算法(Future search algorithm, FSA) 是M. Elsisi于2018年通过模仿人类向往美好生活而提出的一种新的搜索算法,该算法通过建立数学模型模拟人与人之间最优生活(局部搜索)和历史最优生活(全局搜索)来获得最优解。与其他算法相比,FSA具有调节参数少、收敛速度快、寻优能力强等优点。

(1)算法初始化

FSA通过式(1)初始化当前解: S ( i , : ) = Lb + ( Ub − Lb ) . ∗ r a n d ( 1 , d ) (1) S(i, :)=\text{Lb}+(\text{Ub}-\text{Lb}).*rand(1,d)\tag{1} S(i,:)=Lb+(UbLb).rand(1,d)(1)其中, S ( i , : ) S(i,:) S(i,:)表示第 i i i个国家/地区的当前解; Ub \text{Ub} Ub Lb \text{Lb} Lb分别表示搜索空间的上限和下限; r a n d rand rand表示 [ 0 , 1 ] [0,1] [0,1]区间均匀分布随机数; d d d表示问题维数。

(2)局部解和全局最优解

FSA将每个国家/地区当前最优解定义为局部最优解 LS \text{LS} LS,将所有国家/地区当前最优解定义为全局最优解 GS \text{GS} GS,并通过迭代过程获得待优化问题最优解。FSA通过式(2)和(3)实现局部解和全局最优解的更新: S ( i , : ) L = ( LS ( i , : ) − S ( i , : ) ) ∗ r a n d (2) S(i, :)_L=(\text{LS}(i, :)-S(i,:))*rand\tag{2} S(i,:)L=(LS(i,:)S(i,:))rand(2) S ( i , : ) G = ( GS − S ( i , : ) ) ∗ r a n d (3) S(i, :)_G=(\text{GS}-S(i,:))*rand\tag{3} S(i,:)G=(GSS(i,:))rand(3)其中, S ( i , : ) L S(i, :)_L S(i,:)L S ( i , : ) G S(i, :)_G S(i,:)G分别表示第 i i i个国家/地区的局部解和全局最优解; LS ( i , : ) \text{LS}(i, :) LS(i,:)表示第 i i i个国家/地区的局部最优解; GS \text{GS} GS表示所有国家/地区的全局最优解; r a n d rand rand表示 [ 0 , 1 ] [0,1] [0,1]范围内随机数。

(3)定义新解

在获得第 i i i个国家/地区局部解和全局最优解后,利用式(4)重新定义当前解: S ( i , : ) = S ( i , : ) + S ( i , : ) L + S ( i , : ) G (4) S(i, :)=S(i, :)+S(i, :)_L+S(i, :)_G\tag{4} S(i,:)=S(i,:)+S(i,:)L+S(i,:)G(4)

(4)更新随机初始值

FSA在更新局部最优解 LS \text{LS} LS和全局最优解 GS \text{GS} GS后,利用式(5)更新式(1)的随机初始值: S ( i , : ) = GS + ( GS − LS ( i , : ) ) ∗ r a n d (5) S(i, :)=\text{GS}+(\text{GS}-\text{LS}(i, :))*rand\tag{5} S(i,:)=GS+(GSLS(i,:))rand(5)

2、FSA算法流程图

FSA算法流程图如图1所示。
在这里插入图片描述

图1 FSA算法流程图

二、仿真实验与结果分析

将FSA与PSO和GSA进行对比,以文献[1]中表1、表2和表3的F1、F2(单峰函数/30维)、F9、F10(多峰函数/30维)、F14、F15(固定维度多峰函数/2维、4维)为例,实验设置种群规模为30,最大迭代次数为1000,结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FSA:最优值:0
PSO:最优值:182.2818
GSA:最优值:8.6339e-17
函数:F2
FSA:最优值:0
PSO:最优值:19.0327
GSA:最优值:4.5383e-08
函数:F9
FSA:最优值:0
PSO:最优值:79.9366
GSA:最优值:22.884
函数:F10
FSA:最优值:8.8818e-16
PSO:最优值:6.5874
GSA:最优值:5.8252e-09
函数:F14
FSA:最优值:1.992
PSO:最优值:11.7187
GSA:最优值:2.2116
函数:F15
FSA:最优值:0.00031431
PSO:最优值:0.00030749
GSA:最优值:0.0038895

实验结果表明:FSA算法具有更优的性能。

三、参考文献

[1] M. Elsisi. Future search algorithm for optimization[J]. Evolutionary Intelligence, 2019, 12: 21-31.
[2] 郭存文, 崔东文. PCA-FSA-MLR模型及在径流预测中的应用研究[J]. 人民珠江, 2021, 42(6): 91-98.

这篇关于基于未来搜索算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/741596

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C