【数据结构】顺序表实现的层层分析!!

2024-02-23 15:44

本文主要是介绍【数据结构】顺序表实现的层层分析!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
关注小庄 顿顿解馋◍˃ ᗜ ˂◍

引言:本篇博客我们来认识数据结构其中之一的顺序表,我们将认识到什么是顺序表以及顺序表的实现,请放心食用~

文章目录

  • 一.什么是顺序表
    • 🏠 线性表
    • 🏠 顺序表
  • 二.顺序表的实现
    • 🏠 静态顺序表
    • 🏠 动态顺序表
      • 接口的实现
  • 三.顺序表的优缺点

一.什么是顺序表

🏠 线性表

线性表是n个有相同特性数据元素的有限序列,是一种广泛使用的数据结构,常用的数据结构有链表,顺序表,队列和栈等

特点: 线性表在逻辑结构上是线性的(一条连续的直线),但在物理结构不一定连续

理解:比如我们在排队时,我们脑海中认为我们队伍应该是排成一条直线的,实际上也应该如此,这里就是类似我们待会要讲的顺序表,但有有时不免有人会插队三五成群排在队伍左右边,类似我们线性表中的链表。

🏠 顺序表

顺序表是由一块连续的物理内存空间构成的,也就是说它的逻辑结构是线性,物理结构也是线性

那有什么结构是连续的一块的内存空间呢?

这里我们就可以用我们的数组来实现顺序表,你也可以理解为顺序表本质就是数组

二.顺序表的实现

我们一般用顺序表实现对我们的数据进行增删查改操作,来很好地运用我们的数据,顺序表一般分为静态顺序表和动态顺序表。

  • 顺序表结构的分析
    我们既然知道顺序表的本质是数组,那我们需要定义一个数组;
    其次我们要对我们的数据进行增删查改操作,那我们进行增的时候得知道我们空 间有多少容量吧,同时我们进行删除操作时也需要有“边界感”,如果不知道顺序表有没有数据就麻烦了。

因此,我们可以定义一个size来表示有效数据个数,用一个capacity代表顺序表的容量
在这里插入图片描述
注:这里由于数组下标是从0开始,所以我们的size要往前一步跟下标同步

🏠 静态顺序表

静态顺序表:使用定长数组来存储元素

静态顺序表的封装

//静态顺序表
typedef int Datatype;//相同类型元素 方便不同数据类型直接替换
#define N 100
struct Seqlist
{Datatype arr[N];int size;int capacity;
};

缺点: 静态顺序表的数组长度是限定的,导致无法灵活存放数据。空间大了导致浪费,空间小了导致数据丢失。

因此,在实际中,我们采用动态顺序表来操作我们的数据

🏠 动态顺序表

C语言动态内存管理工作是给我们程序员做的,给我们提供更多的灵活性,由程序员决定空间何时申请和释放。我们可利用这特点实现动态顺序表

//动态顺序表
typedef int Datatype; 
typedef struct Seqlist
{Datatype * arr;int size;int capacity;
}Seqlist;

接口的实现

  • 顺序表的初始化
void InitSeqlist(Seqlist* ps)
{ps->arr = NULL;ps->size = ps->capacity = 0;
}

注:这里要传结构体指针,通过传址调用来修改size和capacity

  • 顺序表的打印
    这里就体现size的用处了,从下标0开始,到size就停止打印
void PrintSeqlist(Seqlist* ps)
{assert(ps->size != 0);for (int i = 0; i < ps->size; i++){printf("%d ", ps->arr[i]);}
}
  • 顺序表的头插和尾插
    在这里插入图片描述

顺序表的头插和尾插我们需要解决容量问题
对于空顺序表和空间足够的顺序表我们自然无需担心,但对于size==capacity时的顺序表就需要扩容了,那该怎么扩呢?

我们有三种扩容方式:

  1. 一次扩容一个空间
  2. 一次扩容固定大小空间
  3. 成倍数扩容(1.5或2倍)
    理解:对于第一种扩容方式,有限次数扩容还好,但多次扩容会降低效率;对于第二种空间给少会数据丢失,给多会空间浪费
    最好方法就是成倍扩容,参考文章数组成倍扩容原因

因此进行尾插和头插前要判断是否扩容,不够就成倍扩

void Capacity(Seqlist* ps)
{assert(ps);int newcapacity = 0;if (ps->capacity == ps->size){newcapacity = ps->capacity == 0 ? 4 : 2 * newcapacity;int* temp = (int*)realloc(ps->arr,newcapacity * sizeof(int));if(NULL == temp){perror("realloc failed");exit(1);}ps->arr = temp;}ps->capacity = newcapacity;
}

尾插直接让size下标的空间用来赋值就可以了

void Pushtail(Seqlist* ps, Datatype x)
{assert(ps);//判断是否要扩容Capacity(ps);ps->arr[ps->size++] = x;
}

注:插入数据,size代表的有效数据个数也要增加

头插要先实现数据的左移再插入

void Pushhead(Seqlist* ps, Datatype x)
{assert(ps);//判断容量问题Capacity(ps);for (int i = ps->size; i > 0; i--){ps->arr[i] = ps->arr[i - 1];}ps->arr[0] = x;ps->size++;
}
  • 顺序表的头删和尾删
    请思考一个问题,清除数据,是否一定要删除这个数据?
    当然不是的,我们用不了这个数据使它失效也是可以的

尾删

void Deltail(Seqlist* ps)
{assert(ps->size);assert(ps);ps->size--;
}

头删直接左移数据再使数据无效即可

void Delhead(Seqlist* ps)
{assert(ps->size);assert(ps);for (int i = 0; i < ps->size - 1; i++){ps->arr[i] = ps->arr[i + 1];}ps->size--;//删除数据不代表一定要删除
}

注:删除数据,要使size代表的有效数据个数对应减少

  • 指定位置删除数据和指定位置之前插入数据

删除数据注意size–就可以了,直接循环遍历到pos位置

void PosDel(Seqlist* ps, int pos)
{assert(ps);assert(ps->size);assert(pos > 0&&pos<=ps->size);//pos等于sizeif (pos == ps->size){ps->size--;return;}for (int i = pos - 1; i < ps->size - 1; i++){ps->arr[i] = ps->arr[i + 1];}ps->size--;
}

注意 pos与下标差了1 还有pos的合法性

指定位置插入数据也是可以按照循环移动数据但要注意容量问题

void PosPush(Seqlist* ps, Datatype x, int pos)
{assert(ps);//要确保插入位置的合法性assert(pos >= 0 && pos < ps->size);int i = 0;Capacity(ps);for (i = ps->size; i > pos-1; i--){ps->arr[i] = ps->arr[i - 1];}ps->arr[pos-1] = x;ps->size++;
}

注意 pos合法性和下标关系

延伸:对于指定位置的插入和删除也可以采用memmove来实现

//顺序表的指定位置插入(memmove实现)
void SLInsert1(SL* ps, int pos, Datatype x)
{assert(ps);//要确保插入位置的合法性assert(pos >= 0 && pos < ps->size);Datatype arr2[1] = { 0 };arr2[0] = x;memmove(ps->arr+pos+1,ps->arr+pos,(ps->size-pos)*sizeof(Datatype));memmove(ps->arr + pos, arr2, 4);ps->size++;//记得插入后size要增加
}//顺序表指定位置的删除(memmove)
void SLErase1(SL* ps, int pos)
{assert(ps);assert(pos >= 0 && pos <= ps->size);memmove(ps->arr+pos,ps->arr+pos+1,(ps->size-pos-1)*sizeof(Datatype));ps->size--;
}
  • 查找数据
    直接遍历即可
void SLFind(Seqlist* ps, Datatype x)
{assert(ps);assert(ps->size);for (int i = 0; i < ps->size; i++){if (ps->arr[i] == x){printf("找到了下标为%d", i);return;}}printf("没找到!");return;
}

三.顺序表的优缺点

到这里我们的顺序表基本实现完了,我们分析一下他的优缺点

优点
1.利用数组下标支持随机访问
2.数组空间连续,cpu高速缓存命中率高

缺点
1.进行插入和删除时移动数据效率低下
2.扩容可能造成空间浪费和数据丢失
3.扩容要申请空间拷贝数据,有不小的消耗

总结:顺序表适用于频繁访问和元素高效存储的应用场景

那有什么方法可以解决顺序表暴露的问题呢?请听下回的链表~


本次分享到这就结束了,不妨来个一键三连呀~

这篇关于【数据结构】顺序表实现的层层分析!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739118

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin