SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

本文主要是介绍SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

目录

    • SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
3…data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
数据集格式:
格拉姆角场(Gram Angle Field)和双通道PCNN(Pulse Coupled Neural Network)融合注意力机制是一种用于多特征分类预测的模型。下面我将逐步解释这个模型的各个组成部分:

格拉姆角场:格拉姆角场是一种用于描述特征之间关系的表示方法。在该模型中,特征被转化为格拉姆矩阵,然后通过计算格拉姆矩阵之间的角度,得到格拉姆角场。格拉姆角场可以捕捉特征之间的相关性和相互作用,用于提取更丰富的特征表示。

双通道PCNN:PCNN是一种神经网络模型,模拟了生物神经元之间的脉冲耦合行为。在该模型中,使用两个通道处理输入数据。一个通道用于提取空间特征,另一个通道用于提取时间特征。通过融合这两个通道的特征表示,可以更好地捕捉数据的时空信息。

注意力机制:注意力机制在多特征分类预测中起到关键作用。它可以学习数据中不同特征的重要性权重,以便更有效地融合多个特征表示。注意力机制可以使模型自动关注对分类任务更有贡献的特征,并降低对无关或冗余特征的依赖。

多特征分类预测:在得到融合后的特征表示之后,通常会使用分类器(如全连接层)进行最终的分类预测。分类器可以将模型的输出映射为表示不同类别概率的向量,从而进行分类预测。

综上所述,格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测模型结合了格拉姆角场、双通道PCNN和注意力机制的概念。通过这种方式,模型可以更好地利用多个特征的信息,并关注对分类任务更具意义的特征。这种模型在多特征分类问题中可能具有较好的性能。
在这里插入图片描述
注:程序和数据放在一个文件夹

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)                  % 使训练集、和测试集的随机划分与适应度函数一致%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
Numfeatures = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

这篇关于SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739074

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到