C#,动态规划(DP)丢鸡蛋问题(Egg Dropping Puzzle)的三种算法与源代码

本文主要是介绍C#,动态规划(DP)丢鸡蛋问题(Egg Dropping Puzzle)的三种算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 扔鸡蛋问题

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。

扔鸡蛋问题是计算机程序设计中的一个经典问题。从一幢楼房的不同楼层往下扔鸡蛋,用最少的最坏情况试验次数,确定鸡蛋不会摔碎的最高安全楼层。仅有一个鸡蛋供试验时,只能采用顺序查找法。有足够多的鸡蛋时,可以采用二分查找法。有多于一个但数量有限的鸡蛋时,采用动态规划方法求解。双蛋问题 (two-egg problem) 是本问题的一个特例,曾出现于谷歌的程序员面试题中。
 

2 源程序

using System;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// Dynamic Programming
    /// Egg Dropping Puzzle
    /// </summary>
    public static partial class Algorithm_Gallery
    {
        public static int Egg_Drop(int n, int k)
        {
            if (k == 1 || k == 0)
            {
                return k;
            }
            if (n == 1)
            {
                return k;
            }
            int min = int.MaxValue;
            for (int x = 1; x <= k; x++)
            {
                int res = Math.Max(Egg_Drop(n - 1, x - 1), Egg_Drop(n, k - x));
                if (res < min)
                {
                    min = res;
                }
            }
            return min + 1;
        }

        public static int Egg_Drop_Second(int n, int k)
        {
            int[,] eggFloor = new int[n + 1, k + 1];

            for (int i = 1; i <= n; i++)
            {
                eggFloor[i, 1] = 1;
                eggFloor[i, 0] = 0;
            }

            for (int j = 1; j <= k; j++)
            {
                eggFloor[1, j] = j;
            }
            for (int i = 2; i <= n; i++)
            {
                for (int j = 2; j <= k; j++)
                {
                    eggFloor[i, j] = int.MaxValue;
                    for (int x = 1; x <= j; x++)
                    {
                        int res = 1 + Math.Max(eggFloor[i - 1, x - 1], eggFloor[i, j - x]);
                        if (res < eggFloor[i, j])
                        {
                            eggFloor[i, j] = res;
                        }
                    }
                }
            }

            return eggFloor[n, k];
        }

        private static readonly int MAX_EGGS = 1000;
        private static int[,] egg_drop_dump = new int[MAX_EGGS, MAX_EGGS];

        public static int Egg_Drop_Third(int n, int k)
        {
            if (egg_drop_dump[n, k] != -1)
            {
                return egg_drop_dump[n, k];
            }
            if (k == 1 || k == 0)
            {
                return k;
            }
            if (n == 1)
            {
                return k;
            }

            int min = int.MaxValue;
            for (int x = 1; x <= k; x++)
            {
                int res = Math.Max(Egg_Drop_Third(n - 1, x - 1), Egg_Drop_Third(n, k - x));
                if (res < min)
                {
                    min = res;
                }
            }
            egg_drop_dump[n, k] = min + 1;
            return min + 1;
        }
    }
}

3 代码格式

using System;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{/// <summary>/// Dynamic Programming/// Egg Dropping Puzzle/// </summary>public static partial class Algorithm_Gallery{public static int Egg_Drop(int n, int k){if (k == 1 || k == 0){return k;}if (n == 1){return k;}int min = int.MaxValue;for (int x = 1; x <= k; x++){int res = Math.Max(Egg_Drop(n - 1, x - 1), Egg_Drop(n, k - x));if (res < min){min = res;}}return min + 1;}public static int Egg_Drop_Second(int n, int k){int[,] eggFloor = new int[n + 1, k + 1];for (int i = 1; i <= n; i++){eggFloor[i, 1] = 1;eggFloor[i, 0] = 0;}for (int j = 1; j <= k; j++){eggFloor[1, j] = j;}for (int i = 2; i <= n; i++){for (int j = 2; j <= k; j++){eggFloor[i, j] = int.MaxValue;for (int x = 1; x <= j; x++){int res = 1 + Math.Max(eggFloor[i - 1, x - 1], eggFloor[i, j - x]);if (res < eggFloor[i, j]){eggFloor[i, j] = res;}}}}return eggFloor[n, k];}private static readonly int MAX_EGGS = 1000;private static int[,] egg_drop_dump = new int[MAX_EGGS, MAX_EGGS];public static int Egg_Drop_Third(int n, int k){if (egg_drop_dump[n, k] != -1){return egg_drop_dump[n, k];}if (k == 1 || k == 0){return k;}if (n == 1){return k;}int min = int.MaxValue;for (int x = 1; x <= k; x++){int res = Math.Max(Egg_Drop_Third(n - 1, x - 1), Egg_Drop_Third(n, k - x));if (res < min){min = res;}}egg_drop_dump[n, k] = min + 1;return min + 1;}}
}

这篇关于C#,动态规划(DP)丢鸡蛋问题(Egg Dropping Puzzle)的三种算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738974

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2