【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

本文主要是介绍【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;long long fib(int N)
{if (N < 3)return 1;return fib(N - 1) + fib(N - 2);
}int main()
{return 0;
}

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i)for (int j = 0; j < N; ++j)++count;for (int k = 0; k < 2 * N; ++k)++count;int M = 10;while (M--)++count;cout << count << endl;
}int main()
{return 0;
}

Func1执行的基本操作数:

F(N) = N^{2} + 2N + 10

-> N = 10 F(N) = 130
-> N = 100 F(N) = 10210
-> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000
-> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

O(N)

2.3 -> 常见时间复杂度计算

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k)++count;int M = 10;while (M--)++count;cout << count << endl;
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k)++count;for (int k = 0; k < N; ++k)++count;cout << count << endl;
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k)++count;cout << count << endl;
}

实例4:

// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

实例8:

// 计算斐波那契递归fib的时间复杂度?
long long fib(size_t N)
{if (N < 3)return 1;return fib(N - 1) + fib(N - 2);
}

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例2:

// 计算fib的空间复杂度?
// 返回斐波那契数列的前n项
long long* fib(size_t n)
{if (n == 0)return NULL;long long* arr = (long long*)malloc((n + 1) * sizeof(long long));arr[0] = 0;arr[1] = 1;for (int i = 2; i <= n; ++i)arr[i] = arr[i - 1] + arr[i - 2];return arr;
}

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314O(1)常数阶
3n + 4O(n)线性阶
3n ^ 2 + 4n + 5O(n ^ 2)平方阶
3log(2)n + 4O(logn)对数阶
2n + 3nlog(2)n + 4O(nlogn)nlogn阶
n ^ 3 + n ^ 2 + 3n + 4O(n ^ 3)立方阶
2 ^ nO(2 ^ n)指数阶


感谢大佬们支持!!!

互三啦!!!

这篇关于【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736707

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性