MATLABGRNN广义回归神经网络数据预测编程

2024-02-22 21:58

本文主要是介绍MATLABGRNN广义回归神经网络数据预测编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、理论基础

广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,   网络还可以处理不稳定数据。 广义回归神经网络对x的回归定义不同于径向基函数的对高斯权值的最小二乘法叠加,他是利用密度函数来预测输出。 假定x,y为两个随机变量,联合概率密度为 f(x,y)。 我们就得到以下公式: (x0)=F(y*f(x0,y))/F(f(x0,y)). F代表积分。 (x0)就是y在x0条件下在预测输出。 x0是的观测值。 现在未知数就是f(x,y)。 怎样估计已知数值而未知分布的密度函数呢?这里我们使用Parzen非参数估计方法。 窗口函数选择为高斯窗口。 得到下式 y(x0)=F(y*exp(-d))/F(exp(-d))。 d代表的就是离中心的距离,exp(-d)就是径向基函数隐含层的输出。

二、程序

desired_spread=[]; mse_max=10e20; desired_input=[]; desired_output=[]; result_perfp=[]; indices = crossvalind('Kfold',length(p_train),4); h=waitbar(0,'正在寻找最优化参数....') k=1; for i = 1:4    perfp=[];    disp(['以下为第',num2str(i),'次交叉验证结果'])    test = (indices == i); train = ~test;    p_cv_train=p_train(train,:);    t_cv_train=t_train(train,:);    p_cv_test=p_train(test,:);    t_cv_test=t_train(test,:);    p_cv_train=p_cv_train';    t_cv_train=t_cv_train';    p_cv_test= p_cv_test';    t_cv_test= t_cv_test';    [p_cv_train,minp,maxp,t_cv_train,mint,maxt]=premnmx(p_cv_train,t_cv_train);    p_cv_test=tramnmx(p_cv_test,minp,maxp);    for spread=0.1:0.1:2;        net=newgrnn(p_cv_train,t_cv_train,spread);        waitbar(k/80,h);        disp(['当前spread值为', num2str(spread)]);        test_Out=sim(net,p_cv_test);        test_Out=postmnmx(test_Out,mint,maxt);        error=t_cv_test-test_Out;        disp(['当前网络的mse为',num2str(mse(error))])        perfp=[perfp mse(error)];        if mse(error)<mse_max            mse_max=mse(error);            desired_spread=spread;            desired_input=p_cv_train;            desired_output=t_cv_train;        end        k=k+1;    end    result_perfp(i,:)=perfp; end; disp(['最佳spread值为',num2str(desired_spread)]) disp(['此时最佳输入值为']) desired_input disp(['此时最佳输出值为']) desired_output %% 采用最佳方法建立GRNN网络 net=newgrnn(desired_input,desired_output,desired_spread); p_test=p_test'; grnn_prediction_result=sim(net,p_test); grnn_prediction_result=postmnmx(grnn_prediction_result,mint,maxt); grnn_error=t_test-grnn_prediction_result'; disp(['GRNN神经网络三项流量预测的误差为',num2str(abs(grnn_error))])

[+vx  matlab56,讨论技术问题]   

三、结果展示

这篇关于MATLABGRNN广义回归神经网络数据预测编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736618

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键