【STM32学习】——续上:软件SPI读写W25Q64SPI通信外设硬件SPI读写W25Q64

本文主要是介绍【STM32学习】——续上:软件SPI读写W25Q64SPI通信外设硬件SPI读写W25Q64,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 四、软件SPI读写W25Q64

工程思路与I2C类似,MySPI.c是通信底层,主要包括通信引脚封装、初始化、SPI通信的三个拼图(起始、终止和交换一个字节);基于此文件建立W25Q64.c,调用MySPI三个拼图,拼接成各种指令和功能的完整时序,如写使能、擦除、页编程、读数据等,可看作W25Q64芯片的硬件驱动层。在主函数调用驱动层函数:

//MySPI.c
#include "stm32f10x.h"  void MySPI_W_SS(uint8_t BitValue){//SS或CS,片选或从机选择。GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)BitValue);	
}
void MySPI_W_SCK(uint8_t BitValue){GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)BitValue);	
}
void MySPI_W_MOSI(uint8_t BitValue){GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)BitValue);	
}
uint8_t MySPI_R_MISO(void){return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}
//上面这样的函数,也可用有参宏定义实现void MySPI_Init(void){RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;//推挽输出GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4| GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU ;//上拉输入GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);MySPI_W_SS(1);//初始化后默认电平MySPI_W_SCK(0);//初始化后默认电平
}void MySPI_Start(void){//起始MySPI_W_SS(0);
}
void MySPI_Stop(void){//终止MySPI_W_SS(1);
}
uint8_t MySPI_SwapByte(uint8_t ByteSend){uint8_t i,ByteReceive = 0x00;for(i=0;i<8;i++){MySPI_W_MOSI(ByteSend & (0x80)>> i);//放到线上。与从机同步的MySPI_W_SCK(1);//线上的数据被分别读走(交换)if(MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}//主机接收到的数据位存到ByteReceiveMySPI_W_SCK(0);}return ByteReceive;
}
//0x80 >> i的作用是用来挑出数据的某一位或者某几位(或屏蔽其他的无关位,是掩码操作思想)。好处是没改变传入参数ByteSend
//另一种更简洁的方法,但会改变ByteSend变量:
//uint8_t MySPI_SwapByte(uint8_t ByteSend){
//	uint8_t i;
//	for(i=0;i<8;i++){
//		MySPI_W_MOSI(ByteSend & 0x80);
//		ByteSend <<= 1;
//		MySPI_W_SCK(1);
//		if(MySPI_R_MISO() == 1){ByteSend |= 0x01;}
//			MySPI_W_SCK(0);
//	}
//	return ByteSend;//传入的参数变了,当作返回值返回
//}
//W25Q64.c
#include "stm32f10x.h"   
#include "MySPI.h"
#include "W25Q64_Ins.h"void W25Q64_Init(void){MySPI_Init();
}void W25Q64_ReadID(uint8_t* MID,uint16_t* DID){MySPI_Start();MySPI_SwapByte(W25Q64_JEDEC_ID);*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE );*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);*DID <<= 8;*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);MySPI_Stop();
}void W25Q64_WriteEnable(void){//写使能MySPI_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE);MySPI_Stop();
}void W25Q64_WaitBusy(void){//等待忙MySPI_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);while((MySPI_SwapByte(W25Q64_DUMMY_BYTE)&0x01) == 0x01);//可设置等待时间,超时退出MySPI_Stop();
}void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count){//指定起始地址,给个数据数组和元素数量,就可帮我们发送数据(写)W25Q64_WriteEnable();//写使能(注意事项)uint16_t i;MySPI_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);MySPI_SwapByte(Address >> 16);MySPI_SwapByte(Address >>8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){MySPI_SwapByte(DataArray[i]);}MySPI_Stop();W25Q64_WaitBusy();//等待Busy(注意事项)
}	void W25Q64_SectorErase(uint32_t Address){//擦除指定地址所在扇区(写)W25Q64_WriteEnable();//写使能(注意事项)MySPI_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address >> 16);MySPI_SwapByte(Address >>8);MySPI_SwapByte(Address);MySPI_Stop();W25Q64_WaitBusy();//等待Busy(注意事项)
}void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint32_t Count){//指定起始地址,给个接收数组和元素数量,就可帮我们读取数据(读)uint32_t i;MySPI_Start();MySPI_SwapByte(W25Q64_READ_DATA);MySPI_SwapByte(Address >> 16);MySPI_SwapByte(Address >>8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);}MySPI_Stop();
}
//main.c
#include "stm32f10x.h"   // Device header
#include "Delay.h"   
#include "OLED.h"
#include "W25Q64.h"uint8_t MID;
uint16_t DID;uint8_t ArrayWrite[] = {0x01,0x02,0x03,0x04};
uint8_t ArrayRead[4];int main(void){OLED_Init();W25Q64_Init();OLED_ShowString(1,1,"MID:    DID:");OLED_ShowString(2,1,"W:");OLED_ShowString(3,1,"R:");W25Q64_ReadID(&MID,&DID);OLED_ShowHexNum(1,5,MID,2);OLED_ShowHexNum(1,12,DID,4);W25Q64_SectorErase(0x000000);//后三位随便变,都是擦除该扇区(最小擦除单位)W25Q64_PageProgram(0x000000,ArrayWrite,4);//写入0x01,0x02,0x03,0x04W25Q64_ReadData(0x000000,ArrayRead,4);//读出结果,实际上也是0x01,0x02,0x03,0x04OLED_ShowHexNum(2,3,ArrayWrite[0],2);OLED_ShowHexNum(2,6,ArrayWrite[1],2);OLED_ShowHexNum(2,9,ArrayWrite[2],2);OLED_ShowHexNum(2,12,ArrayWrite[3],2);OLED_ShowHexNum(3,3,ArrayRead[0],2);OLED_ShowHexNum(3,6,ArrayRead[1],2);OLED_ShowHexNum(3,9,ArrayRead[2],2);OLED_ShowHexNum(3,12,ArrayRead[3],2);while(1){}
}

五、SPI通信硬件外设

与I2C一样,除了软件读写方法,STM32内部也集成了硬件SPI收发电路,自动执行时钟生成、数据收发等功能,减轻CPU负担。

硬件手册的说明内容较为繁杂,可采用主线+分支的学习方法,先把简单的实现了,偏难知识点可不深究,后续再增加更多的功能&选择其他配置模式!下面加粗的是随后要代码实测的!

①可配置8位/16位数据帧、高位先行/低位先行。(串口是低位先行)

②时钟频率:外设时钟频率/(2,4,5,16,32,64,128,246)。最大72MHz/2=36MHz

③支持多主机模型、主或从操作。可精简为半双工/单工通信。支持DMA。

④兼容I2S协议:I2S是一种音频传输协议。

这里使用得STM32F103C8T6芯片外设资源:SPI1、SPI2SPI1挂载在APB2,外设时钟频率是72MHz,SPI2挂载在APB1,外设时钟频率是36MHz。

如下为SPI硬件框图

大致可以分为两部分,左上角是数据寄存器和移位寄存器的配合过程,与串口、I2C等的设计思路相似,可对比学习,都是为了实现连续的数据流。核心部分是移位寄存器(右移状态 低位先行),即右侧的数据一位一位从MOSI移出,MISO的数据一位一位移到左侧数据高位;改变LSBFIRST控制位可变为高位先行。MOSI与MISO处方框的交叉线是为了切换为从机模式使用。接收缓冲区RDR发送缓冲区TDR,实际是同一地址统称数据寄存器DR,配合移位寄存器实现连续的数据流,过程如下:

发送数据从数据总线先到TDR,再转到移位寄存器发送,发送的同时接收数据,接收到的数据转到RDR,再从RDR读取数据到数据总线,与串口、I2C的设计相似,但也有些许不同。SPI是全双工,发送和接收是同步进行的,DR的发送和接收缓冲区是分离的,移位寄存器发送和接收可共用;I2C是半双工,发送和接收不同步进行,它的DR和移位寄存器都是共用的;串口是全双工,且发送和接收可异步进行,DR和移位寄存器都是分离的。

右下角是一些控制逻辑,“寄存器的哪些位,控制哪些部分,会产生哪些效果”可通过手册查阅。波特率发生器主要用来产生SCK时钟,内部主要是分频器,输入时钟是PCLK(72M/36M),经过分频后输出到SCK引脚,输出时钟与移位寄存器同步,一个周期移入/出1bit。SPI_CR1寄存器的三个位BR0、BR1、BR2用来控制分频系数,其他具体可看手册。

只保留核心部的简化图:(移位寄存器这里为左移)

如何产生具体的时序呢?什么时候写DR,什么时候读DR呢?

 传输模式主模式全双工连接传输(效率高、程序复杂)和非连续传输(程序简单,推荐初学者)!

上图示例使用的是SPI模式3,所以第一行SCK默认是高电平,在第一个下降沿,MOSI和MISO移出数据,上升沿移入数据;第二行是MOSI和MISO的输出波形,跟随时钟变化,可见示例演示的是低位先行模式,实际使用时高位先行更多;第三行TXE是发送寄存器空标志位;第四行为TDR;第五行BSY由硬件自动设置和清除。后面三行演示的是数据输入(接收数据)的时序。每一个关键点都引出在图下标注,可对照理解。


若没有强制需求,我们更倾向于使用下面的非连续传输,更加简单适合入门者,且对于程序设计非常友好,实际使用时只需要4行代码

这里只演示了输出数据(发送数据),没演示输入数据(接收数据)!区别在于当TXE为1时,不着急立即把下一个数据写进去,而是一直等待,等到第一个时序结束,意味着接收第一个字节也结束了,这时接收的RXNE会置1,先把第一个接收的数据读出来,之后再写入下一个数据。这样拖慢了传输速度,但简洁了流程。


六、硬件SPI读写W25Q64

线路连接和软件SPI一样,但是硬件SPI只有这以一种接法(根据芯片手册连接,不得任意选择),软件SPI的接线可以任意选择。

PA5是SPI1的SCK,所以接到了W25Q64的CLK引脚;PA6是MISO,接到了W25Q64的DO引脚;PA7是MOSI,接到了W25Q64的DI引脚,这几个不可接错。W25Q64的CS接到PA4,VCC和GND不必多说。

//main.c文件
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"uint8_t MID;							//定义用于存放MID号的变量
uint16_t DID;							//定义用于存放DID号的变量uint8_t ArrayWrite[] = {0x01, 0x02, 0x03, 0x04};	//定义要写入数据的测试数组
uint8_t ArrayRead[4];								//定义要读取数据的测试数组int main(void)
{/*模块初始化*/OLED_Init();						//OLED初始化W25Q64_Init();						//W25Q64初始化/*显示静态字符串*/OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");/*显示ID号*/W25Q64_ReadID(&MID, &DID);			//获取W25Q64的ID号OLED_ShowHexNum(1, 5, MID, 2);		//显示MIDOLED_ShowHexNum(1, 12, DID, 4);		//显示DID/*W25Q64功能函数测试*/W25Q64_SectorErase(0x000000);					//扇区擦除W25Q64_PageProgram(0x000000, ArrayWrite, 4);	//将写入数据的测试数组写入到W25Q64中W25Q64_ReadData(0x000000, ArrayRead, 4);		//读取刚写入的测试数据到读取数据的测试数组中/*显示数据*/OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);		//显示写入数据的测试数组OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);			//显示读取数据的测试数组OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while (1){}
}

时序如下W25Q64.c文件:

//W25Q64.c
#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"/*** 函    数:W25Q64初始化* 参    数:无* 返 回 值:无*/
void W25Q64_Init(void)
{MySPI_Init();					//先初始化底层的SPI
}/*** 函    数:MPU6050读取ID号* 参    数:MID 工厂ID,使用输出参数的形式返回* 参    数:DID 设备ID,使用输出参数的形式返回* 返 回 值:无*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位*DID <<= 8;									//高8位移到高位*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64写使能* 参    数:无* 返 回 值:无*/
void W25Q64_WriteEnable(void)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64等待忙* 参    数:无* 返 回 值:无*/
void W25Q64_WaitBusy(void)
{uint32_t Timeout;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令Timeout = 100000;							//给定超时计数时间while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位{Timeout --;								//等待时,计数值自减if (Timeout == 0)						//自减到0后,等待超时{/*超时的错误处理代码,可以添加到此处*/break;								//跳出等待,不等了}}MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64页编程* 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray	用于写入数据的数组* 参    数:Count 要写入数据的数量,范围:0~256* 返 回 值:无* 注意事项:写入的地址范围不能跨页*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{uint16_t i;W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据}MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64扇区擦除(4KB)* 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF* 返 回 值:无*/
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64读取数据* 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回* 参    数:Count 要读取数据的数量,范围:0~0x800000* 返 回 值:无*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{uint32_t i;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据}MySPI_Stop();								//SPI终止
}

由于涉及的文件较多,这里不全部列举,下面是文件下载链接:

百度网盘打开icon-default.png?t=N7T8http://xn--https-bl8js66z7n7i//pan.baidu.com/s/1T0yRNeCorQgHZuZWtdnf7g?pwd=eqld%20%20%E6%8F%90%E5%8F%96%E7%A0%81%EF%BC%9Aeqld软硬件波形对比:

这篇关于【STM32学习】——续上:软件SPI读写W25Q64SPI通信外设硬件SPI读写W25Q64的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736404

相关文章

一文彻底搞懂Java 中的 SPI 是什么

《一文彻底搞懂Java中的SPI是什么》:本文主要介绍Java中的SPI是什么,本篇文章将通过经典题目、实战解析和面试官视角,帮助你从容应对“SPI”相关问题,赢得技术面试的加分项,需要的朋... 目录一、面试主题概述二、高频面试题汇总三、重点题目详解✅ 面试题1:Java 的 SPI 是什么?如何实现一个

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

ShardingSphere之读写分离方式

《ShardingSphere之读写分离方式》:本文主要介绍ShardingSphere之读写分离方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录ShardingSphere-读写分离读写分离mysql主从集群创建 user 表主节点执行见表语句项目代码读写分

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen