第3.4章:StarRocks数据导入——Routine Load

2024-02-22 13:04

本文主要是介绍第3.4章:StarRocks数据导入——Routine Load,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本篇文章阐述的是StarRocks-3.2版本的Routine Load导入机制

一、概述

     Routine Load(例行导入)支持用户提交一个常驻的导入任务,可以将消息流存储在 Kafka 的Topic中,通过订阅Topic 中的全部或部分分区的消息,从而实现数据不间断的导入至 StarRocks。(Routine Load任务是常驻进程)

     Routine Load 支持 Exactly-Once 语义,能够保证数据不丢不重。支持从Kakfa集群中消费 CSV、JSON、Avro (自 v3.0.1) 格式的数据。

    官网文档地址:

使用 Routine Load 导入数据 | StarRocks

CREATE ROUTINE LOAD | StarRocks

    总结:通过在数据库侧建立常驻消费者进程来拉取位于流系统上的数据,该消费者进程会按照定义好的消费逻辑和间隔,攒批数据之后调用stream load导入机制来实现数据导入。

二、Routine Load原理

2.1 流程图

    Routine Load的导入执行流程如下:

2.2 流程详解

 (1)用户通过客户端发起创建routine load任务的请求

(2)FE在收到请求后,会将请求任务通过Job Scheduler将任务拆分成若干个Task,每个Task被TaskScheduler分配到指定的BE上执行

  •   拆分规则:
  • FE 根据期望任务并行度desired_concurrent_number、Kafka Topic 的分区数量、存活 BE 数量等,计算得出实际任务并行度。
  • FE 根据实际任务并行度将导入作业分为若干导入任务,放入任务执行队列中。
  •  每个topic会有多个分区,分区与导入任务之间的对应关系为:
  • 每个分区的消息只能由一个对应的导入任务消费(一个分区只能由一个消费者消费)
  • 一个导入任务可能会消费一个或多个分区(一个分消费者可以消费一个或多个分区)
  • 分区尽可能均匀的分配给导入任务(kafka分区数尽量等于消费者数)

(3)拆分的每个task会被Task Scheduler调度到不同的BE节点上执行

     即:多个导入任务并行进行,消费kafka多个分区的消费,导入至StarRocks

  • 调度和提交导入任务

  FE定时调度任务会去执行队列中的导入人物,分配给选定的 Coordinator BE。调度导入任务的时间间隔由max_batch_interval 参数空值。并且 FE 会尽可能均匀地向所有 BE 分配导入任务

  • 执行导入任务

   Coordinator BE 执行导入任务,消费分区的消息,解析并过滤数据。导入任务需要消费足够多的消息,或者消费足够长时间。

   消费时间和消费的数据量由 FE 配置项 routine_load_task_consume_second、max_routine_load_batch_size决定。

   Coordinator BE将消息分发至相关Executor BE 节点,BE 节点将消息写入磁盘。

 (4)位于每个BE节点的Task 任务会按照预先定义好的消费逻辑,数据攒批后调用stream load任务,完成对应批次数据的导入

 (5)持续生成新的导入任务,不间断地导入数据

        Executor BE 节点成功写入数据后, Coordonator BE 会向 FE 汇报导入结果。FE根据汇报结果,继续生成新的导入任务,或者对失败的导入任务进行重试,连续地导入数据,并且能够保证导入数据不丢不重。

      总结:可以将上述的执行流程理解为一个个不断调度执行的Stream Load任务。在默认参数下,一个Stream Load任务被拆分成若干个Task,Task被调度后,开始对kafka进行为期15秒的数据消费,并现在内存中攒批15秒过后这批数据通过Stream Load的方式导入到对应数据表中,任务完成后向FE汇报,然后间隔10秒后,Task被再次调度,如果循环进行。从Task被调度到本次Stream Load任务完成,整个过程的超时时间默认限制是60秒。FE收到任务汇报结果后,会继续生成后续新的Task,或者对失败的Task进行重试(最多重试3次,都失败则任务暂停)。整个Stream Load作业通过不断的产生新的Task,来完成数据不间断的导入。

    上述提到的三个时间参数可以结合实际的业务情况来修改:

     ①:集群内每个Routine Load导入任务消费数据的最大时间,通过fe.conf中的routine_load_task_consume_second参数设置,默认为15s。(调整后需要重启 FE 使变更生效。)

    ②:子任务调度周期,在Routine Load语句中设置,参数max_batch_interval,默认为10秒。缩短任务调度周期可以加速数据消费,但是更小的任务调度周期也可能会带来更多的CPU资源消耗,还可能会导致Compaction的问题。

   ③:集群内部所有Routine Load任务的执行超时时间:由fe.conf中的task_timeout_second控制,默认为60s

2.3 注意事项

  • Routine Load本质上还是调用的Stream load任务,需要注意攒批频次的设置,不能太过于频繁的去调用,避免未合并的版本数超限(compaction合并问题)。

  • Routine Load任务的消费频次:根据消息的峰值变化速率来设定不同任务的消费频次。

  • 过多的Routine Load任务会占用一定的硬件资源,会导致查询性能的下降。(Routine Load任务是常驻进程

2.4 应用案例

    Routine Load导入案例,见文章:

第3.3章:StarRocks数据导入--Routine Load-CSDN博客

参考文章:
https://blog.csdn.net/ult_me/article/details/122865142?spm=1001.2014.3001.5501

这篇关于第3.4章:StarRocks数据导入——Routine Load的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/735338

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元