使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出

本文主要是介绍使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出

本文章的第三弹,由于LangChain本文不支持直接使用通义千问API进行多轮对话和流式输出,但是自建知识库呢,还需要LangChain,因此我尝试了一下,自建知识库用LangChain,然后使用自己编写的提示词语句来时间查询。最后也能模拟出一个一样的效果。

调用阿里通义千问大语言模型API-小白新手教程-python
LangChain结合通义千问的自建知识库

文章目录

  • 使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出
    • 自建知识库文档
    • 使用LangChain构建本地知识库
    • 多轮对话和流式输出实现代码
  • 总结

自建知识库文档

还是上一篇文章的一小段话

CSDN中浩浩的科研笔记博客的作者是啊浩
博客的地址为 www.chen-hao.blog.csdn.net
其原力等级为5级,在其学习评价中,其技术能力超过了99.6%的同码龄作者,且超过了97.9%的研究生用户。
该博客中包含了,单片机,深度学习,数学建模,优化方法等,相关的博客信息,其中访问量最多的博客是《Arduino 让小车走实现的秘密 增量式PID 直流减速编码电机》。
其个人能力主要分布在Python,和Pytorch方面,其中python相对最为擅长,希望可以早日成为博客专家。

使用LangChain构建本地知识库

在这个代码中,读取切分,使用embedding模型生成词向量直接用一个代码实现,代码如下。

from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import time
import numpy as nptime_list = []t = time.time()
# 导入文本
loader = UnstructuredFileLoader("test.txt")
data = loader.load()# 文本切分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=20, chunk_overlap=0)
split_docs = text_splitter.split_documents(data)
print(split_docs)
model_name = r"Model\bce-embedding-vase_v1"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)# 初始化加载器 构建本地知识向量库
db = Chroma.from_documents(split_docs, embeddings,persist_directory="./chroma/news_test")
# 持久化
db.persist()# 打印时间##
time_list.append(time.time()-t)
print(time.time()-t)

运行结果如下,这个小段文字的文本使用CPU构建本文知识向量库的话的时间大概在8秒
在这里插入图片描述
然后这里的chunk_size不要选择太长,2-3句话的大小就可以,这属于适应文档情况的超参数
如果chunk_size设置的过大,可能会导致只生成了2条知识向量库,然后最后再设置查找多少个样本总结的时候,就会出现查找不到多少条的警告,还会导致判断是否无关的提示词逻辑无效,会输出一大堆无关的结果

多轮对话和流式输出实现代码

这里就是最关键的部分,我先给出代码,然后再说一下里面的内容,代码结合了调整知识向量库加载器和通义前问官方的流式输出API的代码。

from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddingsmessages = []model_name = r"Model\bce-embedding-vase_v1"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs
)
db = Chroma(persist_directory="./chroma/news_test", embedding_function=embeddings)while True:message = input('user:')similarDocs = db.similarity_search(message, k=5)summary_prompt = "".join([doc.page_content for doc in similarDocs])send_message = f"下面的信息({summary_prompt})是否有这个问题({message})有关,如果你觉得无关请告诉我无法根据提供的上下文回答'{message}'这个问题,简要回答即可,否则请根据{summary_prompt}{message}的问题进行回答"messages.append({'role': Role.USER, 'content': send_message})whole_message = ''# 切换模型responses = Generation.call(Generation.Models.qwen_max, messages=messages, result_format='message', stream=True, incremental_output=True)# responses = Generation.call(Generation.Models.qwen_turbo, messages=messages, result_format='message', stream=True, incremental_output=True)print('system:',end='')for response in responses:whole_message += response.output.choices[0]['message']['content']print(response.output.choices[0]['message']['content'], end='')print()messages.append({'role': 'assistant', 'content': whole_message})

提问你好
在这里插入图片描述
提问浩浩的科研笔记的作者是谁。
在这里插入图片描述

总结

后续除了根据文档调chunk_sizek或者提示词之外,想企业应用的话应该需要一些知识图谱相关的逻辑。这个系列目前就到这里,后续有新的发展我会再说。

这篇关于使用LangChain结合通义千问API基于自建知识库的多轮对话和流式输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734054

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方