跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要

2024-02-21 18:32

本文主要是介绍跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TextRank算法基于PageRank,用于为文本生成关键字和摘要。其论文是:

Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004.

先从PageRank讲起。

PageRank

PageRank最开始用来计算网页的重要性。整个www可以看作一张有向图图,节点是网页。如果网页A存在到网页B的链接,那么有一条从网页A指向网页B的有向边。

构造完图后,使用下面的公式:

S(Vi)是网页i的中重要性(PR值)。d是阻尼系数,一般设置为0.85。In(Vi)是存在指向网页i的链接的网页集合。Out(Vj)是网页j中的链接存在的链接指向的网页的集合。|Out(Vj)|是集合中元素的个数。

PageRank需要使用上面的公式多次迭代才能得到结果。初始时,可以设置每个网页的重要性为1。上面公式等号左边计算的结果是迭代后网页i的PR值,等号右边用到的PR值全是迭代前的。

举个例子:

上图表示了三张网页之间的链接关系,直觉上网页A最重要。可以得到下面的表:

结束\起始

横栏代表其实的节点,纵栏代表结束的节点。若两个节点间有链接关系,对应的值为1。

根据公式,需要将每一竖栏归一化(每个元素/元素之和),归一化的结果是:

结束\起始

上面的结果构成矩阵M。我们用matlab迭代100次看看最后每个网页的重要性:

M = [0 1 1 0 0 00 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. ......

  2.  
  3. 95

  4.  
  5. 0.4050

  6. 0.1500

  7. 0.1500

  8.  
  9. 96

  10.  
  11. 0.4050

  12. 0.1500

  13. 0.1500

  14.  
  15. 97

  16.  
  17. 0.4050

  18. 0.1500

  19. 0.1500

  20.  
  21. 98

  22.  
  23. 0.4050

  24. 0.1500

  25. 0.1500

  26.  
  27. 99

  28.  
  29. 0.4050

  30. 0.1500

  31. 0.1500

  32.  
  33. 100

  34.  
  35. 0.4050

  36. 0.1500

  37. 0.1500

最终A的PR值为0.4050,B和C的PR值为0.1500。

如果把上面的有向边看作无向的(其实就是双向的),那么:

M = [0 1 1 0.5 0 00.5 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. .....

  2.  
  3. 98

  4.  
  5. 1.4595

  6. 0.7703

  7. 0.7703

  8.  
  9. 99

  10.  
  11. 1.4595

  12. 0.7703

  13. 0.7703

  14.  
  15. 100

  16.  
  17. 1.4595

  18. 0.7703

  19. 0.7703

依然能判断出A、B、C的重要性。

使用TextRank提取关键字

将原文本拆分为句子,在每个句子中过滤掉停用词(可选),并只保留指定词性的单词(可选)。由此可以得到句子的集合和单词的集合。

每个单词作为pagerank中的一个节点。设定窗口大小为k,假设一个句子依次由下面的单词组成:

w1, w2, w3, w4, w5, ..., wn

w1, w2, ..., wk 、 w2, w3, ...,wk+1 、 w3, w4, ...,wk+2 等都是一个窗口。在一个窗口中的任两个单词对应的节点之间存在一个无向无权的边。

基于上面构成图,可以计算出每个单词节点的重要性。最重要的若干单词可以作为关键词。

使用TextRank提取关键短语

参照“使用TextRank提取关键词”提取出若干关键词。若原文本中存在若干个关键词相邻的情况,那么这些关键词可以构成一个关键短语。

例如,在一篇介绍“支持向量机”的文章中,可以找到三个关键词 支持、向量、机

,通过关键短语提取,可以得到

支持向量机

使用TextRank提取摘要

将每个句子看成图中的一个节点,若两个句子之间有相似性,认为对应的两个节点之间有一个无向有权边,权值是相似度。

通过pagerank算法计算得到的重要性最高的若干句子可以当作摘要。

论文中使用下面的公式计算两个句子Si和Sj的相似度:

分子是在两个句子中都出现的单词的数量。|Si|是句子i的单词数。

由于是有权图,PageRank公式略做修改:

实现TextRank

因为要用测试多种情况,所以自己实现了一个基于Python 2.7的TextRank针对 中文文本 的库 TextRank4ZH 。位于:

https://github.com/someus/TextRank4ZH

下面是一个例子:

#-*- encoding:utf-8 -*-import codecs
from textrank4zh import TextRank4Keyword, TextRank4Sentencetext = codecs.open('./text/01.txt', 'r', 'utf-8').read()
tr4w = TextRank4Keyword(stop_words_file='./stopword.data')  # 导入停止词#使用词性过滤,文本小写,窗口为2
tr4w.train(text=text, speech_tag_filter=True, lower=True, window=2)  print '关键词:'
# 20个关键词且每个的长度最小为1
print '/'.join(tr4w.get_keywords(20, word_min_len=1))  print '关键短语:'
# 20个关键词去构造短语,短语在原文本中出现次数最少为2
print '/'.join(tr4w.get_keyphrases(keywords_num=20, min_occur_num= 2))  tr4s = TextRank4Sentence(stop_words_file='./stopword.data')# 使用词性过滤,文本小写,使用words_all_filters生成句子之间的相似性
tr4s.train(text=text, speech_tag_filter=True, lower=True, source = 'all_filters')print '摘要:'
print '\n'.join(tr4s.get_key_sentences(num=3)) # 重要性最高的三个句子

运行结果如下:

关键词:
媒体/高圆圆/微/宾客/赵又廷/答谢/谢娜/现身/记者/新人/北京/博/展示/捧场/礼物/张杰/当晚/戴/酒店/外套
关键短语:
微博
摘要:
中新网北京12月1日电(记者 张曦) 30日晚,高圆圆和赵又廷在京举行答谢宴,诸多明星现身捧场,其中包括张杰(微博)、谢娜(微博)夫妇、何炅(微博)、蔡康永(微博)、徐克、张凯丽、黄轩(微博)等
高圆圆身穿粉色外套,看到大批记者在场露出娇羞神色,赵又廷则戴着鸭舌帽,十分淡定,两人快步走进电梯,未接受媒体采访
记者了解到,出席高圆圆、赵又廷答谢宴的宾客近百人,其中不少都是女方的高中同学

另外, jieba 分词提供的基于TextRank的关键词提取工具。 snownlp

也实现了关键词提取和摘要生成。

原文地址:https://blog.csdn.net/xiaocong1990/article/details/72614430

这篇关于跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732685

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、