跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要

2024-02-21 18:32

本文主要是介绍跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TextRank算法基于PageRank,用于为文本生成关键字和摘要。其论文是:

Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004.

先从PageRank讲起。

PageRank

PageRank最开始用来计算网页的重要性。整个www可以看作一张有向图图,节点是网页。如果网页A存在到网页B的链接,那么有一条从网页A指向网页B的有向边。

构造完图后,使用下面的公式:

S(Vi)是网页i的中重要性(PR值)。d是阻尼系数,一般设置为0.85。In(Vi)是存在指向网页i的链接的网页集合。Out(Vj)是网页j中的链接存在的链接指向的网页的集合。|Out(Vj)|是集合中元素的个数。

PageRank需要使用上面的公式多次迭代才能得到结果。初始时,可以设置每个网页的重要性为1。上面公式等号左边计算的结果是迭代后网页i的PR值,等号右边用到的PR值全是迭代前的。

举个例子:

上图表示了三张网页之间的链接关系,直觉上网页A最重要。可以得到下面的表:

结束\起始

横栏代表其实的节点,纵栏代表结束的节点。若两个节点间有链接关系,对应的值为1。

根据公式,需要将每一竖栏归一化(每个元素/元素之和),归一化的结果是:

结束\起始

上面的结果构成矩阵M。我们用matlab迭代100次看看最后每个网页的重要性:

M = [0 1 1 0 0 00 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. ......

  2.  
  3. 95

  4.  
  5. 0.4050

  6. 0.1500

  7. 0.1500

  8.  
  9. 96

  10.  
  11. 0.4050

  12. 0.1500

  13. 0.1500

  14.  
  15. 97

  16.  
  17. 0.4050

  18. 0.1500

  19. 0.1500

  20.  
  21. 98

  22.  
  23. 0.4050

  24. 0.1500

  25. 0.1500

  26.  
  27. 99

  28.  
  29. 0.4050

  30. 0.1500

  31. 0.1500

  32.  
  33. 100

  34.  
  35. 0.4050

  36. 0.1500

  37. 0.1500

最终A的PR值为0.4050,B和C的PR值为0.1500。

如果把上面的有向边看作无向的(其实就是双向的),那么:

M = [0 1 1 0.5 0 00.5 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. .....

  2.  
  3. 98

  4.  
  5. 1.4595

  6. 0.7703

  7. 0.7703

  8.  
  9. 99

  10.  
  11. 1.4595

  12. 0.7703

  13. 0.7703

  14.  
  15. 100

  16.  
  17. 1.4595

  18. 0.7703

  19. 0.7703

依然能判断出A、B、C的重要性。

使用TextRank提取关键字

将原文本拆分为句子,在每个句子中过滤掉停用词(可选),并只保留指定词性的单词(可选)。由此可以得到句子的集合和单词的集合。

每个单词作为pagerank中的一个节点。设定窗口大小为k,假设一个句子依次由下面的单词组成:

w1, w2, w3, w4, w5, ..., wn

w1, w2, ..., wk 、 w2, w3, ...,wk+1 、 w3, w4, ...,wk+2 等都是一个窗口。在一个窗口中的任两个单词对应的节点之间存在一个无向无权的边。

基于上面构成图,可以计算出每个单词节点的重要性。最重要的若干单词可以作为关键词。

使用TextRank提取关键短语

参照“使用TextRank提取关键词”提取出若干关键词。若原文本中存在若干个关键词相邻的情况,那么这些关键词可以构成一个关键短语。

例如,在一篇介绍“支持向量机”的文章中,可以找到三个关键词 支持、向量、机

,通过关键短语提取,可以得到

支持向量机

使用TextRank提取摘要

将每个句子看成图中的一个节点,若两个句子之间有相似性,认为对应的两个节点之间有一个无向有权边,权值是相似度。

通过pagerank算法计算得到的重要性最高的若干句子可以当作摘要。

论文中使用下面的公式计算两个句子Si和Sj的相似度:

分子是在两个句子中都出现的单词的数量。|Si|是句子i的单词数。

由于是有权图,PageRank公式略做修改:

实现TextRank

因为要用测试多种情况,所以自己实现了一个基于Python 2.7的TextRank针对 中文文本 的库 TextRank4ZH 。位于:

https://github.com/someus/TextRank4ZH

下面是一个例子:

#-*- encoding:utf-8 -*-import codecs
from textrank4zh import TextRank4Keyword, TextRank4Sentencetext = codecs.open('./text/01.txt', 'r', 'utf-8').read()
tr4w = TextRank4Keyword(stop_words_file='./stopword.data')  # 导入停止词#使用词性过滤,文本小写,窗口为2
tr4w.train(text=text, speech_tag_filter=True, lower=True, window=2)  print '关键词:'
# 20个关键词且每个的长度最小为1
print '/'.join(tr4w.get_keywords(20, word_min_len=1))  print '关键短语:'
# 20个关键词去构造短语,短语在原文本中出现次数最少为2
print '/'.join(tr4w.get_keyphrases(keywords_num=20, min_occur_num= 2))  tr4s = TextRank4Sentence(stop_words_file='./stopword.data')# 使用词性过滤,文本小写,使用words_all_filters生成句子之间的相似性
tr4s.train(text=text, speech_tag_filter=True, lower=True, source = 'all_filters')print '摘要:'
print '\n'.join(tr4s.get_key_sentences(num=3)) # 重要性最高的三个句子

运行结果如下:

关键词:
媒体/高圆圆/微/宾客/赵又廷/答谢/谢娜/现身/记者/新人/北京/博/展示/捧场/礼物/张杰/当晚/戴/酒店/外套
关键短语:
微博
摘要:
中新网北京12月1日电(记者 张曦) 30日晚,高圆圆和赵又廷在京举行答谢宴,诸多明星现身捧场,其中包括张杰(微博)、谢娜(微博)夫妇、何炅(微博)、蔡康永(微博)、徐克、张凯丽、黄轩(微博)等
高圆圆身穿粉色外套,看到大批记者在场露出娇羞神色,赵又廷则戴着鸭舌帽,十分淡定,两人快步走进电梯,未接受媒体采访
记者了解到,出席高圆圆、赵又廷答谢宴的宾客近百人,其中不少都是女方的高中同学

另外, jieba 分词提供的基于TextRank的关键词提取工具。 snownlp

也实现了关键词提取和摘要生成。

原文地址:https://blog.csdn.net/xiaocong1990/article/details/72614430

这篇关于跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732685

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Java 关键字transient与注解@Transient的区别用途解析

《Java关键字transient与注解@Transient的区别用途解析》在Java中,transient是一个关键字,用于声明一个字段不会被序列化,这篇文章给大家介绍了Java关键字transi... 在Java中,transient 是一个关键字,用于声明一个字段不会被序列化。当一个对象被序列化时,被