跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要

2024-02-21 18:32

本文主要是介绍跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TextRank算法基于PageRank,用于为文本生成关键字和摘要。其论文是:

Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004.

先从PageRank讲起。

PageRank

PageRank最开始用来计算网页的重要性。整个www可以看作一张有向图图,节点是网页。如果网页A存在到网页B的链接,那么有一条从网页A指向网页B的有向边。

构造完图后,使用下面的公式:

S(Vi)是网页i的中重要性(PR值)。d是阻尼系数,一般设置为0.85。In(Vi)是存在指向网页i的链接的网页集合。Out(Vj)是网页j中的链接存在的链接指向的网页的集合。|Out(Vj)|是集合中元素的个数。

PageRank需要使用上面的公式多次迭代才能得到结果。初始时,可以设置每个网页的重要性为1。上面公式等号左边计算的结果是迭代后网页i的PR值,等号右边用到的PR值全是迭代前的。

举个例子:

上图表示了三张网页之间的链接关系,直觉上网页A最重要。可以得到下面的表:

结束\起始

横栏代表其实的节点,纵栏代表结束的节点。若两个节点间有链接关系,对应的值为1。

根据公式,需要将每一竖栏归一化(每个元素/元素之和),归一化的结果是:

结束\起始

上面的结果构成矩阵M。我们用matlab迭代100次看看最后每个网页的重要性:

M = [0 1 1 0 0 00 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. ......

  2.  
  3. 95

  4.  
  5. 0.4050

  6. 0.1500

  7. 0.1500

  8.  
  9. 96

  10.  
  11. 0.4050

  12. 0.1500

  13. 0.1500

  14.  
  15. 97

  16.  
  17. 0.4050

  18. 0.1500

  19. 0.1500

  20.  
  21. 98

  22.  
  23. 0.4050

  24. 0.1500

  25. 0.1500

  26.  
  27. 99

  28.  
  29. 0.4050

  30. 0.1500

  31. 0.1500

  32.  
  33. 100

  34.  
  35. 0.4050

  36. 0.1500

  37. 0.1500

最终A的PR值为0.4050,B和C的PR值为0.1500。

如果把上面的有向边看作无向的(其实就是双向的),那么:

M = [0 1 1 0.5 0 00.5 0 0];PR = [1; 1 ; 1];for iter = 1:100PR = 0.15 + 0.85*M*PR;disp(iter);disp(PR);
end

运行结果(省略部分):

 
  1. .....

  2.  
  3. 98

  4.  
  5. 1.4595

  6. 0.7703

  7. 0.7703

  8.  
  9. 99

  10.  
  11. 1.4595

  12. 0.7703

  13. 0.7703

  14.  
  15. 100

  16.  
  17. 1.4595

  18. 0.7703

  19. 0.7703

依然能判断出A、B、C的重要性。

使用TextRank提取关键字

将原文本拆分为句子,在每个句子中过滤掉停用词(可选),并只保留指定词性的单词(可选)。由此可以得到句子的集合和单词的集合。

每个单词作为pagerank中的一个节点。设定窗口大小为k,假设一个句子依次由下面的单词组成:

w1, w2, w3, w4, w5, ..., wn

w1, w2, ..., wk 、 w2, w3, ...,wk+1 、 w3, w4, ...,wk+2 等都是一个窗口。在一个窗口中的任两个单词对应的节点之间存在一个无向无权的边。

基于上面构成图,可以计算出每个单词节点的重要性。最重要的若干单词可以作为关键词。

使用TextRank提取关键短语

参照“使用TextRank提取关键词”提取出若干关键词。若原文本中存在若干个关键词相邻的情况,那么这些关键词可以构成一个关键短语。

例如,在一篇介绍“支持向量机”的文章中,可以找到三个关键词 支持、向量、机

,通过关键短语提取,可以得到

支持向量机

使用TextRank提取摘要

将每个句子看成图中的一个节点,若两个句子之间有相似性,认为对应的两个节点之间有一个无向有权边,权值是相似度。

通过pagerank算法计算得到的重要性最高的若干句子可以当作摘要。

论文中使用下面的公式计算两个句子Si和Sj的相似度:

分子是在两个句子中都出现的单词的数量。|Si|是句子i的单词数。

由于是有权图,PageRank公式略做修改:

实现TextRank

因为要用测试多种情况,所以自己实现了一个基于Python 2.7的TextRank针对 中文文本 的库 TextRank4ZH 。位于:

https://github.com/someus/TextRank4ZH

下面是一个例子:

#-*- encoding:utf-8 -*-import codecs
from textrank4zh import TextRank4Keyword, TextRank4Sentencetext = codecs.open('./text/01.txt', 'r', 'utf-8').read()
tr4w = TextRank4Keyword(stop_words_file='./stopword.data')  # 导入停止词#使用词性过滤,文本小写,窗口为2
tr4w.train(text=text, speech_tag_filter=True, lower=True, window=2)  print '关键词:'
# 20个关键词且每个的长度最小为1
print '/'.join(tr4w.get_keywords(20, word_min_len=1))  print '关键短语:'
# 20个关键词去构造短语,短语在原文本中出现次数最少为2
print '/'.join(tr4w.get_keyphrases(keywords_num=20, min_occur_num= 2))  tr4s = TextRank4Sentence(stop_words_file='./stopword.data')# 使用词性过滤,文本小写,使用words_all_filters生成句子之间的相似性
tr4s.train(text=text, speech_tag_filter=True, lower=True, source = 'all_filters')print '摘要:'
print '\n'.join(tr4s.get_key_sentences(num=3)) # 重要性最高的三个句子

运行结果如下:

关键词:
媒体/高圆圆/微/宾客/赵又廷/答谢/谢娜/现身/记者/新人/北京/博/展示/捧场/礼物/张杰/当晚/戴/酒店/外套
关键短语:
微博
摘要:
中新网北京12月1日电(记者 张曦) 30日晚,高圆圆和赵又廷在京举行答谢宴,诸多明星现身捧场,其中包括张杰(微博)、谢娜(微博)夫妇、何炅(微博)、蔡康永(微博)、徐克、张凯丽、黄轩(微博)等
高圆圆身穿粉色外套,看到大批记者在场露出娇羞神色,赵又廷则戴着鸭舌帽,十分淡定,两人快步走进电梯,未接受媒体采访
记者了解到,出席高圆圆、赵又廷答谢宴的宾客近百人,其中不少都是女方的高中同学

另外, jieba 分词提供的基于TextRank的关键词提取工具。 snownlp

也实现了关键词提取和摘要生成。

原文地址:https://blog.csdn.net/xiaocong1990/article/details/72614430

这篇关于跟我一起学Python3.X之——TextRank算法为文本生成关键字和摘要的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732685

相关文章

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Java中的volatile关键字多方面解析

《Java中的volatile关键字多方面解析》volatile用于保证多线程变量可见性与禁止重排序,适用于状态标志、单例模式等场景,但不保证原子性,相较synchronized更轻量,但需谨慎使用以... 目录1. volatile的作用1.1 保证可见性1.2 禁止指令重排序2. volatile的使用