机器学习实战 学习笔记(一):K近邻实战之房车配对

2024-02-21 13:40

本文主要是介绍机器学习实战 学习笔记(一):K近邻实战之房车配对,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

K近邻实战之房车配对

一.简单K近邻算法
           1.k近邻简介
           2.距离度量
           3.代码实现
二. 小试牛刀sklearn手写数字识别
               1.sklearn简介
               2.sklearn 安装
              3.sklearn实现k近邻算法
              4.sklearn 小试牛刀
三 K近邻实战之房车配对
房车数据来源
房车数据特征分析
房车数据展现
           房车模型训练
           构建完整的可用系统
           房车的效果展示
四总结 kNN算法的优缺点

一 简单k-近邻算法

    本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。

  

1.1 k-近邻法简介

    k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

    举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。

电影名称打斗镜头接吻镜头电影类型
电影11101爱情片
电影2589爱情片
电影31085动作片
电影41158动作片

表1.1 每部电影的打斗镜头数、接吻镜头数以及电影类型

    表1.1就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更”牛逼”,而k-邻近算法是靠已有的数据。比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。你又告诉我另一个电影打斗镜头数为49,接吻镜头数为51,我”邪恶”的经验可能会告诉你,这有可能是个”爱情动作片”,画面太美,我不敢想象。 (如果说,你不知道”爱情动作片”是什么?请评论留言与我联系,我需要你这样像我一样纯洁的朋友。) 但是k-近邻算法不会告诉你这些,因为在它的眼里,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片,但绝不会是”爱情动作片”。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。

1.2 距离度量

    我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢?如图1.1所示。

图1.1 电影分类

    我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

图1.2 两点距离公式

    通过计算,我们可以得到如下结果:

  • (101,20)->动作片(108,5)的距离约为16.55
  • (101,20)->动作片(115,8)的距离约为18.44
  • (101,20)->爱情片(5,89)的距离约为118.22
  • (101,20)->爱情片(1,101)的距离约为128.69

    通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-邻近算法是什么呢?k-近邻算法步骤如下:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

    比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。

1.3 Python3代码实现

    我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。

1.3.1 准备数据集

    对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:

# -*- coding: UTF-8 -*-
import numpy as np"""
函数说明:创建数据集Parameters:无
Returns:group - 数据集labels - 分类标签
Modify:2017-07-13
"""
def createDataSet():#四组二维特征group = np.array([[1,101],[5,89],[108,5],[115,8]])#四组特征的标签labels = ['爱情片','爱情片','动作片','动作片']return group, labels
if __name__ == '__main__':#创建数据集group, labels = createDataSet()#打印数据集print(group)print(labels) 

数据集结果显示:

   

1.3.2 k-近邻算法

    根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

# -*- coding: UTF-8 -*-
import numpy as np
import operator"""
函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果Modify:2017-07-13
"""
def classify0(inX, dataSet, labels, k):#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]

1.3.3 整体代码

    这里预测红色圆点标记的电影(101,20)的类别,K-NN的k值为3。创建kNN_test01.py文件,编写代码如下:

# -*- coding: UTF-8 -*-
import numpy as np
import operator"""
函数说明:创建数据集Parameters:无
Returns:group - 数据集labels - 分类标签
Modify:2017-07-13
"""
def createDataSet():#四组二维特征group = np.array([[1,101],[5,89],[108,5],[115,8]])#四组特征的标签labels = ['爱情片','爱情片','动作片','动作片']return group, labels"""
函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果Modify:2017-07-13
"""
def classify0(inX, dataSet, labels, k):#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集test = [101,20]#kNN分类test_class = classify0(test, group, labels, 3)#打印分类结果print(test_class)
  •     运行结果,如图1.4所示:

  到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两 点距离公式计算,但是如果是更高维的呢?对,没错。我们可以用欧氏距离(也称欧几里德度量),如图1.5所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。

图1.5 欧氏距离公式

    看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程

二.Sklearn实现k-近邻算法简介

2.1 实战背景

    对于需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素。尽管采用本文格式存储图像不能有效地利用内存空间,但是为了方便理解,我们将图片转换为文本格式,数字的文本格式如图2.1所示。

图2.1 数字的文本格式

    与此同时,这些文本格式存储的数字的文件命名也很有特点,格式为:数字的值_该数字的样本序号,如图3.2所示。

图2.2 文本数字的存储格式

    对于这样已经整理好的文本,我们可以直接使用Python处理,进行数字预测。数据集分为训练集和测试集,使用上小结的方法,自己设计k-近邻算法分类器,可以实现分类。


    这里不再讲解自己用Python写的k-邻域分类器的方法,因为这不是本小节的重点。接下来,我们将使用强大的第三方Python科学计算库Sklearn构建手写数字系统。

3.2 Sklearn简介

    Scikit learn 也简称sklearn,是机器学习领域当中最知名的python模块之一。sklearn包含了很多机器学习的方式:

  • Classification 分类
  • Regression 回归
  • Clustering 非监督分类
  • Dimensionality reduction 数据降维
  • Model Selection 模型选择
  • Preprocessing 数据与处理

    使用sklearn可以很方便地让我们实现一个机器学习算法。一个复杂度算法的实现,使用sklearn可能只需要调用几行API即可。所以学习sklearn,可以有效减少我们特定任务的实现周期。

3.3 Sklearn安装

    在安装sklearn之前,需要安装两个库,即numpy+mkl和scipy。不要使用pip3直接进行安装,因为pip3默安装的是numpy,而不是numpy+mkl。第三方库下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/


    找到对应python版本的numpy+mkl和scipy,下载安装即可,如图2.1和图2.2所示。

图2.1 numpy+mkl

图2.2 scipy

    使用pip3安装好这两个whl文件后,使用如下指令安装sklearn。

pip3 install -U scikit-learn
  • 1

2.4 Sklearn实现k-近邻算法简介

    官网英文文档地址

    sklearn.neighbors模块实现了k-近邻算法,内容如图2.3所示。

图2.3 sklearn.neighbors

    我们使用sklearn.neighbors.KNeighborsClassifier就可以是实现上小结,我们实现的k-近邻算法。KNeighborsClassifier函数一共有8个参数,如图2.4所示。

图2.4 KNeighborsClassifier

    KNneighborsClassifier参数说明:

  • n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。
  • weights:默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收距离的数组,返回一组维数相同的权重。
  • algorithm:快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。ball tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。
  • leaf_size:默认是30,这个是构造的kd树和ball树的大小。这个值的设置会影响树构建的速度和搜索速度,同样也影响着存储树所需的内存大小。需要根据问题的性质选择最优的大小。
  • metric:用于距离度量,默认度量是minkowski,也就是p=2的欧氏距离(欧几里德度量)。
  • p:距离度量公式。在上小结,我们使用欧氏距离公式进行距离度量。除此之外,还有其他的度量方法,例如曼哈顿距离。这个参数默认为2,也就是默认使用欧式距离公式进行距离度量。也可以设置为1,使用曼哈顿距离公式进行距离度量。
  • metric_params:距离公式的其他关键参数,这个可以不管,使用默认的None即可。
  • n_jobs:并行处理设置。默认为1,临近点搜索并行工作数。如果为-1,那么CPU的所有cores都用于并行工作。

    KNeighborsClassifier提供了以一些方法供我们使用,如图2.5所示。

图2.5 KNeighborsClassifier的方法

    由于篇幅原因,每个函数的怎么用,就不具体讲解了。官方手册已经讲解的很详细了,各位可以查看这个手册进行学习,我们直接讲手写数字识别系统的实现。

2.5 Sklearn小试牛刀

    我们知道数字图片是32x32的二进制图像,为了方便计算,我们可以将32x32的二进制图像转换为1x1024的向量。对于sklearn的KNeighborsClassifier输入可以是矩阵,不用一定转换为向量,不过为了跟自己写的k-近邻算法分类器对应上,这里也做了向量化处理。然后构建kNN分类器,利用分类器做预测。创建kNN_test04.py文件,编写代码如下:

# -*- coding: UTF-8 -*-
import numpy as np
import operator
from os import listdir
from sklearn.neighbors import KNeighborsClassifier as kNN"""
函数说明:将32x32的二进制图像转换为1x1024向量。Parameters:filename - 文件名
Returns:returnVect - 返回的二进制图像的1x1024向量Modify:2017-07-15
"""
def img2vector(filename):#创建1x1024零向量returnVect = np.zeros((1, 1024))#打开文件fr = open(filename)#按行读取for i in range(32):#读一行数据lineStr = fr.readline()#每一行的前32个元素依次添加到returnVect中for j in range(32):returnVect[0, 32*i+j] = int(lineStr[j])#返回转换后的1x1024向量return returnVect"""
函数说明:手写数字分类测试Parameters:无
Returns:无Modify:2017-07-15
"""
def handwritingClassTest():#测试集的LabelshwLabels = []#返回trainingDigits目录下的文件名trainingFileList = listdir('trainingDigits')#返回文件夹下文件的个数m = len(trainingFileList)#初始化训练的Mat矩阵,测试集trainingMat = np.zeros((m, 1024))#从文件名中解析出训练集的类别for i in range(m):#获得文件的名字fileNameStr = trainingFileList[i]#获得分类的数字classNumber = int(fileNameStr.split('_')[0])#将获得的类别添加到hwLabels中hwLabels.append(classNumber)#将每一个文件的1x1024数据存储到trainingMat矩阵中trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))#构建kNN分类器neigh = kNN(n_neighbors = 3, algorithm = 'auto')#拟合模型, trainingMat为测试矩阵,hwLabels为对应的标签neigh.fit(trainingMat, hwLabels)#返回testDigits目录下的文件列表testFileList = listdir('testDigits')#错误检测计数errorCount = 0.0#测试数据的数量mTest = len(testFileList)#从文件中解析出测试集的类别并进行分类测试for i in range(mTest):#获得文件的名字fileNameStr = testFileList[i]#获得分类的数字classNumber = int(fileNameStr.split('_')[0])#获得测试集的1x1024向量,用于训练vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))#获得预测结果# classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)classifierResult = neigh.predict(vectorUnderTest)print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))if(classifierResult != classNumber):errorCount += 1.0print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))"""
函数说明:main函数Parameters:无
Returns:无Modify:2017-07-15
"""
if __name__ == '__main__':handwritingClassTest()
  •     运行上述代码,得到如图2.6所示的结果。

 

上述代码使用的algorithm参数是auto,更改algorithm参数为brute,使用暴力搜索,你会发现,运行时间变长了,变为10s+。更改n_neighbors参数,你会发现,不同的值,检测精度也是不同的。自己可以尝试更改这些参数的设置,加深对其函数的理解。

三 k-近邻算法实战之房车配对判定




这篇关于机器学习实战 学习笔记(一):K近邻实战之房车配对的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_19865617/article/details/80790450
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/731954

相关文章

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel