如何在MaxCompute上处理存储在OSS上的开源格式数据

2024-02-20 23:40

本文主要是介绍如何在MaxCompute上处理存储在OSS上的开源格式数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么80%的码农都做不了架构师?>>>   hot3.png

前言

MaxCompute作为使用最广泛的大数据平台,内部存储的数据以EB量级计算。巨大的数据存储量以及大规模计算下高性能数据读写的需求,对于MaxCompute提出了各种高要求及挑战。处在大数据时代,数据的来源多种多样,开源社区经过十几年的发展,百花齐放,各种各样的数据格式不断的出现。 我们的用户也在各个场景上,通过各种计算框架,积累了各种不同格式的数据。怎样将MaxCompute强大的计算能力开放给这些使用开源格式存储沉淀下来的数据,在MaxCompute上挖掘这些数据中的信息,是MaxCompute团队希望解决的问题。

MaxCompute 2.0最近推出的非结构化计算框架【公测阶段】,旨在从存储介质和存储格式两个维度,打通计算与存储的通道。 在之前的文章中,我们已经介绍过怎样在MaxCompute上对存储在OSS上的文本,音频,图像等格式的数据,以及TableStore(OTS)的KV数据进行计算处理。在这里,则将介绍对于各种流行的开源数据格式(ORC, PARQUET, SEQUENCEFILE, RCFILE, AVRO, TEXTFILE等等),怎样将其存储在OSS上面,并通过非结构化框架在MaxCompute进行处理。

本着不重造轮子的原则,对于绝大部分这些开源数据格式的解析工作,在非结构化框架中会直接调用开源社区的实现,并且无缝的与MaxCompute系统做对接。

1. 创建EXTERNAL TABLE来绑定OSS外部数据

MaxCompute非结构化数据框架通过EXTERNAL TABLE的概念来提供MaxCompute与各种数据的联通,与读取OSS数据的使用方法类似,对OSS数据进行写操作,首先要通过CREATE EXTERNAL TABLE语句创建出一个外部表,而在读取开源数据格式时,创建外表的DDL语句格式如下:

DROP TABLE [IF EXISTS] <external_table>;CREATE EXTERNAL TABLE [IF NOT EXISTS] <external_table>
(<column schemas>)
[PARTITIONED BY (partition column schemas)]
[ROW FORMAT SERDE '<serde class>']
STORED AS <file format>
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${bucket}/${userPath}/'

可以看到,这个语法与HIVE的语法是相当接近的,而在这个CREATE EXTERNAL TABLE的ddl语句中,有如下几点要说明:

  1. 首先要特别说明的是这里使用的是STORED AS的关键字,而不是普通非结构化外表用的STORED BY关键字,这也是目前在读取开源兼容数据时独有的。
  2. 外部表的<column schemas> 必须与具体OSS上存储存储数据的schema相符合。
  3. ROW FORMAT SERDE 并非必选选项,只有在使用一些特殊的格式上,比如TEXTFILE时才需要使用。
  4. STORED AS后面接的是文件格式名字, 比如 ORC/PARQUET/RCFILE/SEQUENCEFILE/TEXTFILE 等等。
  5. 最后还要提到的是,在上面这个例子中,我们在LOCATION上使用了OSS明文AK,这只适用于在用户对于AK的保密性不敏感情况下使用。 对于数据安全比较敏感的场景,比如在多用户场景或者弹外集群上,则推荐使用通过STS/RAM体系事先进行鉴权,从而避免使用明文AK。

1.1 范例1: 关联OSS上存储的PARQUET数据

现在再来看一个具体的例子,假设我们有一些PARQUET文件存放在一个OSS路径上,每个文件都是PARQUET格式,存放着schema为16列(4列BINGINT, 4列DOUBLE, 8列STRING)的数据,那么可以通过如下DDL语句来描述:

CREATE EXTERNAL TABLE tpch_lineitem_parquet
(l_orderkey bigint,l_partkey bigint,l_suppkey bigint,l_linenumber bigint,l_quantity double,l_extendedprice double,l_discount double,l_tax double,l_returnflag string,l_linestatus string,l_shipdate string,l_commitdate string,l_receiptdate string,l_shipinstruct string,l_shipmode string,l_comment string
)
STORED AS PARQUET
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/parquet_data/';

1.2 范例2:分区表关联OSS上存储的TEXTFILE数据

同样的数据,如果是每行以JSON格式,存储成OSS上TEXTFILE文件;同时,数据在OSS通过多个目录组织,这时是可以使用MaxCompute分区表和数据关联,则可以通过如下DDL语句来描述:

CREATE EXTERNAL TABLE tpch_lineitem_textfile
(l_orderkey bigint,l_partkey bigint,l_suppkey bigint,l_linenumber bigint,l_quantity double,l_extendedprice double,l_discount double,l_tax double,l_returnflag string,l_linestatus string,l_shipdate string,l_commitdate string,l_receiptdate string,l_shipinstruct string,l_shipmode string,l_comment string
)
PARTITIONED BY (ds string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
STORED AS TEXTFILE
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data/';

如果OSS表目录下面的子目录是以Partition Name方式组织,比如:

oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data/ds=20170102/'
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data/ds=20170103/'
...

则可以使用以下DDL语句ADD PARTITION:

ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170102");
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170103");

如果OSS分区目录不是按这种方式组织,或者根本不在表目录下,比如:

oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data_20170102/;
oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data_20170103/;
...

则可以使用以下DDL语句ADD PARTITION:

ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170102")
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data_20170102/';
ALTER TABLE tpch_lineitem_textfile ADD PARTITION(ds="20170103")
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@oss-cn-hangzhou-zmf.aliyuncs.com/bucket/text_data_20170103/';
...

2. 读取以及处理 OSS 上面的开源格式数据

对比上面的两个范例,可以看出对于不同文件类型,只要简单修改STORED AS后的格式名。在接下来的例子中,我们将只集中描述对上面PARQUET数据对应的外表(tpch_lineitem_parquet)的处理,如果要处理不同的文件类型,只要在DDL创建外表时指定是PARQUET/ORC/TEXTFILE/RCFILE/TEXTFILE即可,处理数据的语句则是一样的。

2.1 直接读取以及处理OSS上面的开源数据

在创建数据外表后,直接对外表就可以进行与普通MaxCompute表的操作,直接对存储在OSS上的数据进行处理,比如:

SELECT l_returnflag,l_linestatus,SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,AVG(l_quantity) AS avg_qty,COUNT(*) AS count_order
FROM tpch_lineitem_parquet
WHERE l_shipdate <= '1998-09-02'
GROUP BYl_returnflag,l_linestatus;

可以看到,在这里tpch_lineitem_parquet这个外表被当作一个普通的内部表一样使用。唯一不同的只是在MaxCompute内部计算引擎将从OSS上去读取对应的PARQUET数据来进行处理。

但是我们应该强调的是,在这里直接使用外表,每次读取的时候都需要涉及外部OSS的IO操作,并且MaxCompute系统本身针对内部存储做的许多高性能优化都用不上了,所以性能上会有所损失。 所以如果是需要对数据进行反复计算以及对计算的高效性比较敏感的场景上,我们推荐下面这种用法:先将数据导入MaxCompute内部,再进行计算。

注意,上面例子中的tpch_lineitem_textfile表,因为使用了ROW FORMAT + STORED AS,需要手动设置flag(只使用STORED AS,odps.sql.hive.compatible默认为TRUE),再进行读取,否则会有报错。

SELECT * FROM tpch_lineitem_textfile LIMIT 1;
FAILED: ODPS-0123131:User defined function exception - Traceback:
com.aliyun.odps.udf.UDFException: java.lang.ClassNotFoundException: com.aliyun.odps.hive.wrapper.HiveStorageHandlerWrapper--需要手动设置hive兼容flag
set odps.sql.hive.compatible=true;
SELECT * FROM tpch_lineitem_textfile LIMIT 1;
+------------+------------+------------+--------------+------------+-----------------+------------+------------+--------------+--------------+------------+--------------+---------------+----------------+------------+-----------+
| l_orderkey | l_partkey  | l_suppkey  | l_linenumber | l_quantity | l_extendedprice | l_discount | l_tax      | l_returnflag | l_linestatus | l_shipdate | l_commitdate | l_receiptdate | l_shipinstruct | l_shipmode | l_comment |
+------------+------------+------------+--------------+------------+-----------------+------------+------------+--------------+--------------+------------+--------------+---------------+----------------+------------+-----------+
| 5640000001 | 174458698  | 9458733    | 1            | 14.0       | 23071.58        | 0.08       | 0.06       | N            | O            | 1998-01-26 | 1997-11-16   | 1998-02-18    | TAKE BACK RETURN | SHIP       | cuses nag silently. quick |
+------------+------------+------------+--------------+------------+-----------------+------------+------------+--------------+--------------+------------+--------------+---------------+----------------+------------+-----------+

2.2 将OSS上的开源数据导入MaxCompute,再进行计算

  • 首先创建一个与外部表schema一样的内部表tpch_lineitem_internal,然后将OSS上的开源数据导入MaxCompute内部表,以cFile格式存储在MaxCompute内部:
CREATE TABLE tpch_lineitem_internal LIKE tpch_lineitem_parquet;INSERT OVERWRITE TABLE tpch_lineitem_internal
SELECT * FROM tpch_lineitem_parquet;
  • 直接就可以对内部表进行同样的操作:
SELECT l_returnflag,l_linestatus,SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,AVG(l_quantity) AS avg_qty,COUNT(*) AS count_order
FROM tpch_lineitem_internal
WHERE l_shipdate <= '1998-09-02'
GROUP BYl_returnflag,l_linestatus;

通过这样子将数据先导入系统的情况下,对同样数据的计算就会更高效得多。

4. 结语

开源的种种数据格式往往由各种数据处理生态产生,而MaxCompute非结构化数据处理框架通过实现计算与存储的互联,希望打通阿里云核心计算平台与各种数据的通路。在这个基础上,各种各样依赖于不同数据格式的应用,将能在MaxCompute计算平台上实现,后继我们会对一些具体的这种应用,比如基因计算等,再做一些具体的case study以及介绍。我们也欢迎有对开源数据进行处理分析的更多应用,能在MaxCompute强大计算能力的基础上开花结果。

原文链接

本文为云栖社区原创内容,未经允许不得转载。

转载于:https://my.oschina.net/yunqi/blog/1821933

这篇关于如何在MaxCompute上处理存储在OSS上的开源格式数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729905

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避