估值380亿美元,AWS与微软参投,大数据独角兽Databricks凭什么IPO?

2024-02-20 20:59

本文主要是介绍估值380亿美元,AWS与微软参投,大数据独角兽Databricks凭什么IPO?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e4e171503164a20b95ca541f66baf29f.png

当外界还在惊叹280亿美元高额估值数额时,短短7个月,Databricks的估值再升100亿美元。 

美国当地时间8月31日,由 Apache Spark 初始成员创立的大数据初创公司 Databricks 宣布获得 16 亿美元 H 轮融资,新一轮融资由摩根士丹利的 Counterpoint Global 领投,此外,该行业的三个顶级云供应商 AWS、微软、以及 CapitalG都参与了此轮投资。本轮融资过后,Databricks的估值已经飙升至380亿美元。也就是说,距离上一轮10亿美元的G轮融资才7个月时间,其估值就已经增加了100亿美元。

f532710d7fb207722908433160bd8ebc.png

“分析与数据管理”投资热潮高涨,Databrick就是典型代表

Databricks联合创始人兼首席执行官 Ali Ghodsi 表示,这轮 16 亿美元的融资证实了他们对任何云上的数据和人工智能的开放和统一方法的愿景,且这笔资金将主要用于加速Data Lakehouse(湖仓一体)的产品创新和市场开拓。

5a05ff3e744f190a33e37f88dcbe7830.png

Crunchbase 数据指出,自云服务计算公司 Snowflake 在近一年前成功进行首次公开募股以来,风险资本对分析和数据管理初创企业的投资热潮已经达到了近 170 亿美元。其中有 150 多亿美元是在过去 8 个月里筹集的,而 Databricks 一直是其中的典型代表。

毫无疑问,Databricks 和 Snowflake 引领了一种新的云原生模型分析和商业智能模型。他们从不同的角度来解决问题,Snowflake 是集中式共享模型的缩影,而 Databricks 则强调分布式架构。不过,也有很多分析师认为他们最终的业务发展走向可能会趋于一致。譬如,Snowflake 最近就放弃了"warehouse"一词,而采用了更无定形的"data cloud"。

百亿估值的Databricks,到底是做什么的?

从Databricks官方主页上的标语:“一个 Lakehouse 平台,承载所有数据、分析和人工智能”出发,我们来了解一下Databricks。

2605d4024f306dda37ffadd48438fbcd.png

从本质上讲,Databricks是一家计算公司,通过解决三个关键问题中的以下两个,提出了一种搭建数据流水线的低代码解决方案:

  • 如何使用数据?

  • 如何把数据从源头向下游汇集和转化?

Databricks诞生于2013年,创始人来自Apache Spark的创始团队,包括加州大学伯克利分校的专家学者。Databricks以Apache Spark开源技术为基础,创建了一系列蓬勃发展的开源项目,包括Delta Lake、MLflow、Koalas等。截止2020年底,Databricks已经建立了一家拥有1500多名员工的公司,为数千个数据团队提供数据分析、数据工程、数据科学和人工智能方面的帮助。

2020年初,Databricks发表了一篇博客文章,分析了一直观察到的一个趋势:向Lakehouse架构(湖仓一体,即数据湖技术与数据仓库技术结合为一体)迈进。该体系结构基于开放架构,把构建在低成本云对象存储之上的数据湖的灵活性与 ACID 事务、数据模式强制执行和数据仓库相关的性能结合起来;

2019年,Databricks推出了Lakehouse的关键开源技术Delta Lake;

2020年6月,Databricks宣布收购以色列初创公司Redash并基于其技术推出了Lakehouse关键开源技术Delta Engine。同年,Delta Lake、Apache Spark和Databricks统一分析平台的进步,不断提高了Lakehouse架构的功能和性能。

抢滩 Lakehouse 市场,大胆拥抱开源

Ali Ghodsi 认为资本能帮助 Databricks 进一步获得市场领先地位。

“Lakehouse是一个新赛道,我们认为这个赛道中会有很多供应商,所以说这是一场地盘争夺战。我们希望快速构建并完成 lakehouse 赛道的布局。” Ghodsi 强调。

Lakehouse(湖仓一体),简单理解就是把面向企业的数据仓库技术与低廉的数据湖存储技术相结合。数据湖主要是公有云上提供的一种海量的结构化与非结构化数据的存储技术,而数据仓库主要是关系型数据的结构化数据存储与分析技术。两种技术各有其优缺点,当下企业往往分别建数据湖与数据仓库,而如果能够二者合一则可以同时获得两种技术的优点。当然,湖仓一体技术本身并不简单,整个2020年Databricks都在填补Lakehouse的技术空白。

Databricks试图提供完整的“数据流水线”方案——这意味着更多需要处理的数据、更多跑数据的机器、更多的收入。

Databricks看到了数据科学家和分析师们负责数据接入、基础架构、效率提升这些更底层的工作,所以工程师们对灵活度的要求很高,并且完全不介意多写一些代码,或是自己搭方案。

984752aa434b4f96cb01e66c990cdb78.png

在“数据流水线”上,这些数据工程师们往往占据上游,为了赢得他们的青睐,Databricks采用的策略是拥抱开源,尤其是继Spark之后,推出了Delta Lake——一个开源的数据存储方案。开源的方案给了这些工程师们所需的自由度,使得他们能够更可预期地掌握、挪动数据。Delta的开源,意味着任何人都可以在其方案里使用优秀的“.delta”存储格式,但是这在Databricks的数据本里,有着最为方便的原生支持。与新的功能,比如“Live Table”一起,Databricks平台已经开始赢得一些硬核数据工程师的青睐。

从长远来看,能让所有与数据打交道的人们在同一个平台上协作,就有着巨大的价值。与Databricks试图提供完整的“数据流水线”方案的愿景相似,智领云云原生DataOps同样试图让数据工程师等数据工作者能够用更简洁的工具支持自己的工作与管理。

智领云云原生DataOps的目标即让数据科学家、数据工程师以及数据运维人员等不同群体,能够在一套体系、工具与方法论的支持下,敏捷且高效地从事数据开发、数据管理等工作。

智领云云原生DataOps所做的事情就是为以数据为驱动的企业与数据工作者来做减法,此减法并非删减,而是通过云原生的方式让用户能够更加方便地集成各种工具与应用,然后在上层做出数据安全、数据质量、数据集成等抽象层,从而使用户即便是在使用看起来十分复杂的DataOps技术时,也能够得心应手。

文章参考:

InfoQ | 估值高达380亿美元!大数据独角兽Databricks官宣16亿美元新融资

云科技时代 | 大数据独角兽Databricks凭什么估值280亿美元?

硅谷成长攻略 | 百亿估值的Databricks,到底是做什么的?

 -End-

  文末抽奖  

扫码关注公众号

后台回复关键字【码农】

邀请10位好友领取奖品

75413ab6d67f3bd86ff9d87152534890.png

c95cb6d4c955a323b07eda9298d77d17.png

往期精彩回顾 

  • 特斯拉人形机器人亮相,机器人研发大军再加重磅级大亨马斯克 

  • 基于大数据的预测工具:寿命计算器,准确率高达98%,算算你能活多久?

  • 让Facebook和Google自叹不如,新算法无人机战胜人类专家……

  • 全球数据能存在一个咖啡杯中?DNA数据存储意外走红

  • “元宇宙”概念引爆科技界:扎克伯格说它将颠覆人类社会,英伟达也来“搅局”?

👇更多智领云科技详细内容,点击“阅读原文

这篇关于估值380亿美元,AWS与微软参投,大数据独角兽Databricks凭什么IPO?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/LinkTime_Cloud/article/details/120540722
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/729528

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文