c++ 线性代数 克·施密特(Gram Schmidt)

2024-02-20 10:36

本文主要是介绍c++ 线性代数 克·施密特(Gram Schmidt),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        克·施密特(Gram-Schmidt)正交化方法是一种将一组线性无关的向量转换为一组正交(垂直)向量的技术。该方法是线性代数中常用的工具,它的核心思想是将一组线性无关的向量集合通过减去它们在前面向量方向上的投影来得到一组正交的向量。

具体步骤如下:

  1. 给定一组线性无关的向量 {v₁, v₂, ..., vn}。
  2. 将第一个向量v₁单位化得到u₁: u₁ = v₁ / ||v₁||,其中||v₁||是v₁的模。
  3. 对于i从2到n: a. 计算第i个向量vᵢ与前i-1个单位化向量u₁, u₂, ..., uᵢ₋₁之间的投影: projᵢ = (vᵢ · u₁)u₁ + (vᵢ · u₂)u₂ + ... + (vᵢ · uᵢ₋₁)uᵢ₋₁ b. 计算第i个正交向量uᵢ: uᵢ = vᵢ - projᵢ c. 将uᵢ单位化: uᵢ = uᵢ / ||uᵢ||

        通过这种方法,我们可以从一个线性无关的向量集合构造出一组正交的基向量,这在解决许多数学和工程问题时非常有用。Gram-Schmidt方法在解决线性方程组、矩阵分解、特征值问题等方面具有广泛的应用。

示例:

linearalgebra.h:

/* ----------------------- norm ----------------------- */
/*  Given an array and its length, this function 
    computes the 2-norm of the array.
    
    Input variables:
        x     : pointer to array for which the 2-norm should
                 be computed.
        length: number of entries in x.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.      */

double norm (double * x, int length) {
    int i, length5;
    double a, sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * x[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * x[i] + x[i + 1] * x[i + 1] + x[i + 2] * x[i + 2]
                           + x[i + 3] * x[i + 3] + x[i + 4] * x[i + 4];
    }

    return sqrt(sum);
}


/* ----------------------- vec_copy ----------------------- */
/*  Given two arrays of the same length and their length, 
    this function stores the values from the first array
    in the second array.
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

void vec_copy (double * x, double * y, int length) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i];
    }
    for(; i < length; i += 5) {
        y[i] = x[i];
        y[i + 1] = x[i + 1];
        y[i + 2] = x[i + 2];
        y[i + 3] = x[i + 3];
        y[i + 4] = x[i + 4];
    }
}


/* ------------------- partialvec_copy ------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function stores the values from the
    subarray x[index : index + length] in the array
    y[0 : length].
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in y.
        index : starting index of subarray of x to be
                copied to y.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, and index = 2. Then after executing
    partialvec_copy(x, y, 3, 2), the array pointed to by 
    y is now {3, 4, 5}.                         

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

void partialvec_copy (double * x, double * y, int length, int index) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i + index];
    }
    for(; i < length; i += 5) {
        y[i] = x[i + index];
        y[i + 1] = x[i + index + 1];
        y[i + 2] = x[i + index + 2];
        y[i + 3] = x[i + index + 3];
        y[i + 4] = x[i + index + 4];
    }
}


/* ----------------------- scalar_div ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function divides the values from the 
    first array by the scalar value and stores the computed
    number in the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 divided by r and stored in second array, y.
        r     : scalar used in division.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_div (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i]/r;
    }
    for(; i < length; i += 5) {
        y[i] = x[i]/r;
        y[i + 1] = x[i + 1]/r;
        y[i + 2] = x[i + 2]/r;
        y[i + 3] = x[i + 3]/r;
        y[i + 4] = x[i + 4]/r;
    }
}


/* ----------------------- scalar_sub ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function multiplies the values from the 
    first array by the scalar value and then subtracts the 
    computed components from the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_sub (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i] -= r * x[i];
        y[i + 1] -= r * x[i + 1];
        y[i + 2] -= r * x[i + 2];
        y[i + 3] -= r * x[i + 3];
        y[i + 4] -= r * x[i + 4];
    }
}


/* --------------------- partialscalar_sub --------------------- */
/*  Given two arrays, the length of the second array, a scalar 
    value, and an index, this function multiplies the values 
    starting at the given index from the first array by the 
    scalar value and then subtracts the computed components from 
    the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in y.
        index : 
        y     : pointer to array in which the components
                 of x are to be stored.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, r = -1, and index = 2. Then after executing
    partialscalar_sub(x, -1, 3, 2, y), the array pointed to 
    by y is now {-3, -4, -5}. 

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.               */

void partialscalar_sub (double * x, double r, int length, 
                                              int index, double * y) 
{
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i + index] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i + index] -= r * x[i];
        y[i + index + 1] -= r * x[i + 1];
        y[i + index + 2] -= r * x[i + 2];
        y[i + index + 3] -= r * x[i + 3];
        y[i + index + 4] -= r * x[i + 4];
    }
}


/* --------------------- dot_product --------------------- */
/*  Given two arrays of the same length and their length, 
    this function returns the dot product of the two 
    arrays.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

double dot_product (double * x, double * y, int length) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* ------------------ partialdot_product ------------------ */
/*  Given two arrays of the same length, their length, and
    an index this function returns the dot product of the 
    two subarrays x[index : length] and y[index : length].
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.
        index : starting index for subarrays.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4}, y is a pointer to the array {5, 6, 7, 8}, 
    length = 4, and index = 2. Then the value returned by
    executing partialdot_product(x, y, 4, 2) is 53, which
    is computed by
        x[2] * y[2] + x[3] * y[3] = 3 * 7 + 4 * 8
                                  = 21 + 32
                                  = 53.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double partialdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = index; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* -------------------- subdot_product -------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function returns the dot product of the 
    two subarrays x[index : index + length] and 
    y[0 : length]. It is necessary that index + length is
    at most the length of the first array.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in y.
        index : starting index for subarray of x.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array 
    {-1, -2, -3}, length = 3, and index = 2. Then the value 
    returned by executing subdot_product(x, y, 3, 2) is 53, 
    which is computed by
            x[2] * y[0] + x[3] * y[1] + x[4] * y[2] 

          =  3   *  -1  +  4   *  -2  +  5   *  -3

          = -    3      -      8      -      15

          = -26.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double subdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i + index] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i + index] * y[i] + x[i + index + 1] * y[i + 1] 
                                   + x[i + index + 2] * y[i + 2]
                                   + x[i + index + 3] * y[i + 3]
                                   + x[i + index + 4] * y[i + 4];
    }

    return sum;
}

gramSchmidt.cpp:

#include <algorithm>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include "linearalgebra.h"


/* ----------------------- gramSchmidt ----------------------- */
/*  Given a matrix A of dimension m by n, this algorithm 
    computes a QR decomposition of A, where Q is a unitary 
    m by n matrix and R is a n by n upper triangular matrix
    and A = QR.    
    
    Input variables:
        a   : pointer to array of arrays, the ith array of
                which should correspond to the ith column of the 
                matrix A. During the algorithm, the columns of Q 
                will replace the columns of A.
        r   : pointer to array of arrays in which the ith 
                column of the upper triangular matrix R will be 
                stored in the ith subarray of r.
        m   : number of columns in A.
        n   : number of rows in A.
        thin: TRUE  => thin QR factorization computed
              FALSE => full QR factorization computed

    Features: This implementation has time complexity O(m n^2)
    and requires O(1) additional memory.

    Remarks: Due to the nature of the problem, if A is nearly
    rank-deficient then the resulting columns of Q may not
    exhibit the orthogonality property.                        */

void gramSchmidt (double ** a, double ** r, int m, int n, bool full) {
    int i, j;
    double anorm, tol = 10e-7;

    for(i = 0; i < n; i++) {
        r[i][i] = norm(a[i], m);                  // r_ii = ||a_i||

        if(r[i][i] > tol) {
            scalar_div(a[i], r[i][i], m, a[i]);   // a_i = a_i/r_ii
        }
        else if(i == 0) { // set a[0] = [1 0 0 ... 0]^T
            a[i][0] = 1;
            for(j = 1; j < m; j++) {
                a[i][j] = 0;
            }
        }
        else{ // need to choose a_i orthogonal to < a_1, ... a_{i-1} >
            for(j = 0; j < m; j++) {
                a[i][j] = -a[0][i] * a[0][j];
            }
            a[i][i] += 1;

            for(j = 1; j < i; j++) {
                scalar_sub(a[j], a[j][i], m, a[i]);
            }

            anorm = norm(a[i], m);
            scalar_div(a[i], anorm, m, a[i]);
        }

        for(j = i+1; j < n; j++) {
            r[j][i] = dot_product(a[i], a[j], m); // r_ij = a_i*a_j
            scalar_sub(a[i], r[j][i], m, a[j]);   // a_j -= r_ij a_i
        }
    }

    /* if full QR factorization requested, we choose remaining 
       columns of Q so that the m columns of Q form an 
       orthonormal set                                          */
    if(full) {
        for(; i < m; i++) {
            for(j = 0; j < m; j++) {
                    a[i][j] = -a[0][i] * a[0][j];
                }
                a[i][i] += 1;
    
                for(j = 1; j < i; j++) {
                    scalar_sub(a[j], a[j][i], m, a[i]);
                }
    
                anorm = norm(a[i], m);
                scalar_div(a[i], anorm, m, a[i]);
        }
    }
}


int main () {
    int i, j, n, m, q_n, r_m;
    bool full;
    double x;

    /* let user set the dimension of matrix A */
    std::cout << "Enter the dimension m (where A is a m by n matrix): ";
    std::cin >> m;
    std::cout << "Enter the dimension n (where A is a m by n matrix): ";
    std::cin >> n;

    if(m != n) {
        /* check if m < n */
        if(m < n) {
            printf("For a successful factorization, this implementation "
                   "requires n <= m.\nTerminating program.\n");
            return 0;
        }
        /* let user choose either full or thin QR factorization */
        std::cout << "Enter either 0 to compute a thin QR factorization"
                  << std::endl;
        std::cout << "          or 1 to compute a full QR factorization: ";
        std::cin >> full;
    }
    else { // else m == n so full and thin QR factorization are identical */
        full = 1;
    }

    /* set dimensions of matrices Q and R based on full or thin QR */
    if(full) { // Q is m by m and R is m by n
        q_n = m;
        r_m = m;
    }
    else { // Q is m by n and R is n by n
        q_n = n;
        r_m = n;
    }

    /* allocate memory for the matrices A and R */
    double ** a = new double*[q_n];
    double ** r = new double*[n];
    for(i = 0; i < n; i++) {
        a[i] = new double[m];
        r[i] = new double[r_m];
    }
    for(; i < q_n; i++) {
        a[i] = new double[m];
    }

    /* initialize the values in matrix A (only n columns regardless of
       thin QR or full QR) */
    for(i = 0; i < n; i++) {
        for(j = i; j < m; j++) {
            a[i][j] = j - i + 1; // this choice of values was arbitrary
        }
    }

    /* print the matrix A before calling gramSchmidt */
    std::cout << "A = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* execute gramSchmidt to compute QR factorization */
    gramSchmidt(a, r, m, n, full);

    /* print the matrix Q resulting from gramSchmidt */
    std::cout << "Q = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < q_n; j++) {
            if(a[j][i] >= 0) {
                std::cout << " ";
            }
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print the matrix R resulting from gramSchmidt */
    std::cout << "R = " << std::endl;
    for(i = 0; i < r_m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", r[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print numerical evidence that columns of Q are orthonormal */
    printf("Numerical verification that {q_1, ..., q_%i} is an "
           "orthonormal set:\n", q_n);
    for(i = 0; i < q_n; i++) {
        for(j = i; j < q_n; j++) {
            x = dot_product(a[i], a[j], m);
            printf("q_%i * q_%i = %lg\n", i + 1, j + 1, x);
        }
    }
    
    /* free memory */
    for(i = 0; i < n; i++) {
        delete[] a[i];
        delete[] r[i];
    }
    for(; i < q_n; i++) {
        delete[] a[i];
    }
    delete[] a;  
    delete[] r;

    return 0;       // exit main
}

 

这篇关于c++ 线性代数 克·施密特(Gram Schmidt)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727936

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么