拉链表的概念设计与实现

2024-02-20 07:20
文章标签 实现 拉链 概念设计

本文主要是介绍拉链表的概念设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拉链表

一、概念

拉链表是针对数据仓库设计中表存储数据的方式而定义的,所谓拉链,就是记录历史。记录一个事物从开始,一直到当前状态的所有变化的信息。

用处: 解决持续增长且存在一定时间时间范围内重复的数据
场景: 数据规模庞大,新数据【在有限的时间】内存在多种状态变化
原来解决方案: 采用分区表,用户分区存储历史增量数据,缺点是重复数据太多
优点: 节约空间

二、拉链表的设计

以订单为例:

普通表存每天数据

order_id bigint,			-- 订单id
user_id bigint,				-- 订单创建时间 
order_modify_dt timestamp,	--状态更改时间 
order_money decimal(10,2),	--订单价格 
current_status int			--订单状态

每次存储某一天数据

拉链(分区分桶表)

order_id bigint,
user_id bigint,
order_create_dt timestamp,
order_modify_dt timestamp,
order_money decimal(10,2),
current_status int

将初始数据装如拉链表

用某一天部分数据更新拉链表,新订单生成,旧订单修改

三、拉链表的实现

创建普通表存原始数据

create table hive_zipper_order(order_id bigint,user_id bigint,order_modify_dt timestamp,order_money decimal(10,2),current_status int
)
row format delimited fields terminated by ',';
// 将数据文件导入原始表格
load data local inpath '/root/data/order_record.log'
overwrite into table hive_zipper_order;

创建拉链表

//操作历史全量数据用动态分区
set hive.support.concurrency=true;  			-- hive支持
set hive.enforce.bucketing=true;				-- hive强制分桶
set hive.exec.dynamic.partition.mode=nonstrict; --动态分区 分区表 	给首次将大量数据导入使用
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; --事务管理器 
set hive.compactor.initiator.on=true; 			-- 表合并开启
set hive.compactor.worker.threads=1; 			-- 表合并线程必须为一
set hive.auto.convert.join=false;			 	-- 关闭 mapjoin,只能是reducejoin
set hive.merge.cardinality.check=false; 		-- 关闭检查数据列的基数(列值的差异性)
// 创建拉链表
drop table if exists hive_zipper_pc_order;
create table hive_zipper_pc_order(order_id bigint,user_id bigint,order_create_dt timestamp,order_modify_dt timestamp,order_money decimal(10,2),current_status int
) partitioned by(year int,month int,day int)
clustered by(order_create_dt) into 4 buckets
row format delimited fields terminated by ','
stored as orc tblproperties("transactional"="true");

开启动态分区,一次性挂载

// 对拉链表的数据进行聚合,获取订单信息的创建日期、修改日期和订单状态
with zip_src as (select order_id,user_id,order_money,min(order_modify_dt) as order_create_dt,max(order_modify_dt) as order_modify_dt,max(current_status) as current_statusfrom hive_zipper_ordergroup by order_id,user_id,order_money
)
// 将原始数据灌入拉链表
insert overwrite table hive_zipper_pc_order partition(year,month,day)
select order_id,user_id,order_create_dt,order_modify_dt,order_money,current_status,year(order_create_dt) as year,month(order_create_dt) as month,day(order_create_dt) as day
from zip_src;

拉链表查询

// 拉链表查询 查询之前必须先有这两句配置
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
set hive.support.concurrency=true;
select * from hive_zipper_pc_order
where to_date(order_modify_dt)='2021-02-04'
order by order_modify_dt desc;

之后每天,增量添加

// 对于追加增量数据,将增量数据覆盖在原始数据表中
load data local inpath '/root/data/order_record_2021_02_05.log'
overwrite into table hive_zipper_order;

拉链处理增量数据(新增新数据,修改旧数据)

// 将原始数据表中的增量数据插入拉链表
// 利用源数据和目标表的order_id进行匹配,若匹配则更新现有订单信息,若不匹配则插入新订单
merge into hive_zipper_pc_order as O
using (select order_id,user_id,order_create_dt,order_modify_dt,order_money,current_status,year(order_create_dt) as year,month(order_create_dt) as month,day(order_create_dt) as dayfrom (select order_id,user_id,order_money,min(order_modify_dt) as order_create_dt,max(order_modify_dt) as order_modify_dt,max(current_status) as current_statusfrom hive_zipper_order--where to_date(order_modify_dt)='2021-02-05'group by order_id,user_id,order_money)T
) as H
on O.order_id=H.order_id
when matched then 
update set order_modify_dt=H.order_modify_dt,current_status=H.current_status
when not matched then 
insert values(H.order_id,H.user_id,H.order_create_dt,H.order_modify_dt,H.order_money,H.current_status,H.year,H.month,H.day);

验证拉链结果

select * from hive_zipper_pc_order
where to_date(order_modify_dt)>to_date(order_create_dt);

数据仓库_缓慢渐变维_拉链表(全揭秘)_拉链表中的代理主键-CSDN博客

拉链表_什么是拉链表-CSDN博客

这篇关于拉链表的概念设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727433

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核