【搜索引擎分析策略(Analyzer = Tokenizer + Filter)】种瓜得豆?

本文主要是介绍【搜索引擎分析策略(Analyzer = Tokenizer + Filter)】种瓜得豆?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你晓得伐?Solr的文本分析链

  <analyzer type="index或者query"><tokenizer class="solr.StandardTokenizerFactory"/> 只会有一个分词器!<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" /> 可以有多个过滤器!<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/> 可以有多个过滤器!<filter class="org.apache.lucene.analysis.core.LowerCaseFilterQueryFactory"/> 可以有多个过滤器!</analyzer>
单词含义拓展
term词项被分词器分词出来的独立的词项
analyzer分析器(整部剧叫做鹿鼎记)一般包含了一个tokenizer和多个filter
tokenizer分词器(有且只有一个韦小宝)首先,将文档分成一个一个单独的单词,也就是词项
filter过滤器(韦小宝的妻妾成群)其次,对词项进行自定义处理,比如去除停词,筛选同义词,大写转小写等

你晓得伐?ES的文本分析步骤

步骤描述举例个数
1. 字符过滤(character filtering)调整或者过滤文本字段的字符HTMLStripCharFilter可配置多个字符过滤器
2. 分词处理(tokenization)原生文本会被转换成一连串的token,基本方法是采用标准分词器,利用“空格”和“标点符号”将文本切分成token。StandardTokenizer任何给定的分析链上,只可能有一个分词器(有且只有一个韦小宝)
3. token过滤(token filtering)通过对token的添加、删除和修改,对“token流”加以调整LowerCaseFilter,SynonymFilter和StopWordFilter可配置多个token过滤器(韦小宝的妻妾成群)
  • 各个行业,各个垂直领域需要根据具体业务场景选用或者开发适合自己的analyzer,比如Lucene为NLP领域提供的analyzers-opennlp工具包。
    The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text.
  • ES为各种语言提供了简便易用的Analysis Plugins文本分析工具,比如ayalysisc-icu和analysis-kuromoji插件

索引输入

id,title,name
1234,a the mazhaohui CCC,a the mazhaohui this Apple

期望查询结果

索引时被过滤的字段(比如停用词),仍然在查询时保留作为查询条件。

优化思路

  1. fieldType支持配置analyzer作为文本解析器,同时analyzer可以分“index”和“query”两个场景。analyzer中支持配置tokenizer和filter对词项进行定制化操作,比如Solr自带的StandardTokenizer,它是TokenStream类的实现类,各种Filter比如StopFilterFactory和LowerCaseFilter,他们也都是TokenStream的子类(本是同根生,相煎何太急)。
  2. 每个TokenStream的实现类都必须必须实现incrementToken方法,对词项进行自定义修改。因此可以考虑在query场景的分词过滤器中自定义是否将查询词项过滤或者保留,以实现和索引不一样的分词逻辑。
  3. 某些查询词项在索引时被分词器或者过滤器过滤,现在需要将某些特定的查询词项保留,使得该查询条件仍然在查询时生效。
  • 在索引时,可以减少索引的存储量,减少磁盘占用空间,提升索引的性能;
  • 在查询时,带上了早已被过滤的查询条件,可能带来查询性能的提升,无论是AND(减少结果集,减少带宽占用)还是OR(至少不会增大结果集)操作。

managed-schema配置分析器

<fieldType name="text_general" class="solr.TextField" positionIncrementGap="100"><analyzer type="index"><tokenizer class="solr.StandardTokenizerFactory"/><filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" /><!-- in this example, we will only use synonyms at query time<filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>--><filter class="solr.LowerCaseFilterFactory"/></analyzer><analyzer type="query"><tokenizer class="solr.StandardTokenizerFactory"/><filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" /><filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/><filter class="org.apache.lucene.analysis.core.LowerCaseFilterQueryFactory"/></analyzer>
</fieldType>

设置停词表stopwords.txt

更新停词表stopwords.txt,更新配置集,索引重新加载配置集,重启Solr服务才能生效。
停词stopwords.txt

本是同根生,相煎何太急

StandardTokenizer是一个TokenStream,各种Filter比如LowerCaseFilter也是一个TokenStream,也就是说他们拥有共同的父类
每个TokenStream的实现类都必须必须实现incrementToken方法,对词项进行自定义的修改。
Do whatever you want.
incrementToken方法

首当其冲的是用StandardTokenizer将词项分出来

StandardTokenizer的scanner从Reader里逐个读出每个分词出来的词项。

  • a
  • the
  • mazhaohui
  • CCC
    分词出来
    StandardTokenizer

取其精华,去其糟粕

在StandardTokenizer和FilteringTokenFilter完成incrementToken之后,“a the mazhaohui”这些停词已经被过滤掉了,
接下来,在LowerCaseFilter的incrementToken(基类TokenStream的抽象方法)成功将词项CCC,转成了小写的ccc。
ccc
因此,最终title字段会索引ccc词项以供查询(indexed),而a the mazhaohui词项被设置为停词,不会被索引,只会被查询ccc的结果带出(stored)。分词过滤逻辑到此结束,接着由DefaultIndexingChain继续索引流程。
DefaultIndexingChain继续索引流程

样例测试

  1. 在停词表stopwords.txt中增加abcdefg
  2. 设置查询条件为title:abcdefg

结果展示

经过调试可以看到,在索引时会被直接当做停词过滤的词项"abcdefg",在查询时被当做查询条件接受了。这时词项“abcdefg”就会存活下来,作为查询条件继续后续的查询流程。
org.apache.lucene.analysis.core.StopFilterQueryFactory

Exception

ClassNotFoundException: solr.StopFilterQueryFactory类找不到?!简写包名看起来不行~
java.lang.ClassNotFoundException: solr.StopFilterQueryFactory

Solution

managed-schema配置query场景下的分词过滤器,使用刚刚新建出来的StopFilterQueryFactory类,注意写上完整包名。
org.apache.lucene.analysis.core.StopFilterQueryFactory

Reference

https://github.com/apache/lucene-solr/blob/master/solr/core/src/test-files/solr/collection1/conf/stopwords.txt
https://github.com/magese/ik-analyzer-solr7
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_9.0.0/com.ibm.commerce.tutorials.doc/tutorial/tsd_search3_solrconfig.htm
https://www.cnblogs.com/immortal-ghost/p/6954360.html

这篇关于【搜索引擎分析策略(Analyzer = Tokenizer + Filter)】种瓜得豆?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/724717

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N