灰色预测GM(1,1)模型及MATLAB实现

2024-02-19 07:40

本文主要是介绍灰色预测GM(1,1)模型及MATLAB实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

因为做毕设开始接触的灰色预测,发表的第一篇小论文也是基于GM(1,1)灰色预测模型的,这一篇主要想详细记录一下灰色理论的基础知识以及分享一下我在毕设中用到的MATLAB代码。如有问题欢迎指正交流(#.#)

灰色预测方法是一种用来对灰色系统进行预测的方法,灰色系统是指信息不完全的一种系统,是一种广泛用于研究少数据、贫信息问题的方法。GM(1,1)预测模型的基本原理是:对某一数据序列使用累加的方法生成一组变化趋势明显的新序列,对新的数据序列建立模型并进行预测,然后利用累减的方法逆向计算,使其恢复为原始序列,以此得出预测模型结果。
GM(1,1)建模过程如下:
设一组原始数列为:

n为数据个数,对x(0)进行一阶累加生成数列:

生成x(1)的紧邻均值数列:

根据灰色系统理论对x(1)建立关于t的白化微分方程GM(1,1):

其中,a是发展系数,b是灰作用量,z(1)(k)是白化背景值,x(0)(k)是灰导数,且

带入n值可得

引入矩阵向量记号:

于是GM(1,1)模型可表示为:

利用最小二乘法可求得a,b的值

对于GM(1,1)的灰微分方程,如果将时刻k=2,3,…,n视为连续变量t,则之前的x(1)视为时间t函数,于是得到GM(1,1)灰微分方程对应的白化微分方程:

解得:

于是得到预测值:

从而可以得到还原预测值:

为确保GM(1,1)建模的实用性,需在预测前对已有的数据进行验证。计算数列的级比:

当计算出来的级比均落在可覆盖区间内时,则可以对数列x(0)建立GM(1,1)模型,并进行灰色预测。可覆盖区间X:

模型的误差检验
对建立的灰色模型进行精度检验方法如下,且预测精度等级对照表如表1所示。
均值:

方差:

残差的均值:

残差的方差:

后验差比值C:

小误差概率P:


MATLAB代码实现:

%建立符号变量a(发展系数)和b(灰作用量)
syms a b;
c = [a b]';%原始数列 A
A=input('请输入原始序列(格式为[1.5, 2.1, 3.3, 4.6, 5.7]): ');
m=input('请输入后续需要预测的数据个数: ');
n = length(A);%对原始数列 A 做累加得到数列 B
B = cumsum(A);%对数列 B 做紧邻均值生成
for i = 2:nC(i) = (B(i) + B(i - 1))/2; 
end
C(1) = [];%构造数据矩阵 
B = [-C;ones(1,n-1)];
Y = A; Y(1) = []; Y = Y';%使用最小二乘法计算参数 a(发展系数)和b(灰作用量)
c = inv(B*B')*B*Y;
c = c';
a = c(1); b = c(2);%预测后续数据
F = []; F(1) = A(1);
for i = 2:(n+m)F(i) = (A(1)-b/a)/exp(a*(i-1))+ b/a;
end%对数列 F 累减还原,得到预测出的数据
G = []; G(1) = A(1);
for i = 2:(n+m)G(i) = F(i) - F(i-1); %得到预测出来的数据
enddisp('预测数据为:');
G%模型检验H = G(1:10);
%计算残差序列
epsilon = A - H;%方差比C检验
C = std(epsilon, 1)/std(A, 1)
if C<0.35disp('系统预测精度好')else if C<0.5disp('系统预测精度合格')else if C<0.65disp('系统预测精度勉强')elsedisp('系统预测精度不合格')endend
end%绘制曲线图
t1 = 0:9;
t2 = 0:(9+m);plot(t1, A,'bo--'); hold on;
plot(t2, G, 'r*-');
xlabel('距瓦斯涌出点距离'); ylabel('瓦斯浓度');
legend('实测瓦斯浓度','预测瓦斯浓度');
title('瓦斯浓度变化曲线');
grid on;

上述程序为当时做毕设时根据我的任务目标来编写的,原始数据个数为10,后续预测数据个数输入为10后得到拟合及预测结果图如下:

根据上述结果分析可得,GM(1,1)模型在本次实验中平均模拟相对误差为2.176%,预测精度良好。

这篇关于灰色预测GM(1,1)模型及MATLAB实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723981

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符