特定场景小众领域数据集之——焊缝质量检测数据集

2024-02-19 03:40

本文主要是介绍特定场景小众领域数据集之——焊缝质量检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写这篇文章最大的初衷就是最近频繁的有很多人私信问我相关的数据集的问题,基本上都是从我前面的目标检测专栏里面的这篇文章过来的,感兴趣的话可以看下:

《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》

保姆级的教程,小白即可直接上手操作实践整个完整流程。

很多人在最开始做目标检测的时候没有自己的数据集,或者是由于自己的专业方向需要的就是比如:缺陷、质量等特定专业领域内的数据集,所以看到这里就感觉很相关。

由于之前的文章过去的时间有点久了,上周一直也没时间去搜索和梳理相关的内容。

今天正好有点时间我重新冲数据库中检索出来了焊缝质量检测最原始的数据集,我们称之为【基础数据集】,如下所示:

 JPEGImages目录如下:

 labels目录如下:

 xmls目录如下:

 最原始批次的数据集共有1134个样本。

做CV相关任务我们应该都懂得这1k左右的数据量对于训练一个目标检测模型来说实在是有点捉襟见肘,所以从数据源头获取到更多的高质量的数据集显得就尤为重要了,基于对原始数据集的观察,我发现这里的采集的数据大都是方方正正的,我们可以先设计基础的方法进行扩充增强处理,就可以从源头端获取到更多的数据集了,这里我采取的方式包:左右倒置、上下置换、90°、180°和270°旋转处理,一共获取到了5670个样本数据,我们称之为【扩充数据集】,如下所示:

 JPEGImages目录如下所示:

 labels目录如下所示:

 xmls目录如下所示:

 完成这部分工作后同事提议说,也可以基于连续角度的旋转来构建广度更大的增强数据集,简答来说这里我们以15°作为最基本的角度间隔单元,从15°到300°,一共划分出来了17个单元,共生成了19278个新的样本数据,我们称之为【角度数据集】,如下所示:

 JPEGImages目录如下所示:

 labels目录如下所示:

 xmls目录如下所示:

 到这里,其实经过我们的一系列处理后就已经得到了基本够用于模型训练的数据集了,联想到之前我们项目里面实现和应用的一些增强的方法,这里我们又基于基础数据集来进行了一波增强处理,一共获得了12000个样本数据,我们称之为【增强数据集】,在这批增强数据里面主要包含三种常见的技术增强手段,分别为:随机增强处理、mixup增强处理、mosaic增强处理,每种技术增强均产生4000个样本数据,一共就是12000个样本数据,如下所示:

 mixup目录如下所示:

 JPEGImages目录如下所示:

 xmls目录如下所示:

 mosaic目录如下所示:

 JPEGImages目录如下所示:

 xmls目录如下所示:

 random目录如下所示:

 JPEGImages目录如下所示:

 xmls目录如下所示:

 整体数据情况如下:
 

在后续的开发工作中,因为实际项目复杂场景的客观存在,leader要求增加数据的丰富性,这里基于图像变换操作开发了新的增强方法,实现了新批量数据的扩充增强处理,这里称之为【变换增强数据集】

 详情如下:

 该批次增强得到的数据集与原始数据集较为相近,可用度还是很高的,适应了不同尺度的变化,共获取了将近1.6w的数据量。

之后leader基于aug增强方式,实现了更为复杂的增强扩充,这里新生成的图像数据已经是变化很大的了,相对原始数据来说差异性也更为明显,主要是想要生成困难识别的样本,让模型训练在实验数据的场景下能够更加鲁棒稳定,这里称之为【深度增强数据集】。

 详情如下:

 这批次共得到11429张图像数据,生成这批图像的难点在于得到图像复杂变化后与之对应的目标框的新的坐标位置。

数据整体详情如下:

【基础数据集】
1134【扩充数据集】
5670【角度数据集】
19278【增强数据集】
12000【变换增强数据集】
15936【深度增强数据集】
11429总计: 1134+5670+19278+12000+15936+11429=65447QQ  3439227837

数据开发制作不易,相互理解。

由于过去时间久远,部分数据集已经遗失,本身获取链接是都可以放在这里的,但是平台一直不给审核通过,实属无奈,如果有需要就私信联系我吧。

这篇关于特定场景小众领域数据集之——焊缝质量检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723387

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据