十大经典排序算法之一--------------堆排序(java详解)

2024-02-19 03:36

本文主要是介绍十大经典排序算法之一--------------堆排序(java详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.堆排序基本介绍:

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

 大顶堆&&小顶堆(图解):

  大顶堆:

 其中,二叉树节点外面标注的是堆对应的数组下标,也就是:

小顶堆:

*假设我们有了一个待排序的数组,并且构建好了他的逻辑结构,怎么能通过孩子找到双亲,或者通过双亲找到左右孩子呢?其实也很好理解,我们拿一颗二叉树出来就能很轻易的得出公式:

具体公式:  parent = (child - 1) / 2 ;

                   leftchild = parent * 2 + 1 ;

                   rightchild = parent * 2 + 2 ;

                   rightchild = leftchild + 1;

 二.堆排序详解:

2.1.堆排序的基本思路(这里以顺序排序为主):

  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点
  3. 将其与末尾元素进行交换,此时末尾就为最大值
  4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了

 ①.构建大顶堆:

1).以给定的无序堆为例:

2).此时我们从最后一个非叶子节点开始(叶子节点自然不用调整,最后一个非叶子节点为:

 arr.length / 2 - 1;也就是下面的6节点 ),从左至右,从上至下进行调整:

 3).找到第二个非叶节点4,由于【4,9,8】中9最大,4和9交换:

 4).这时,交换导致了子根【4,5,6】结构混乱(因为我们要建立的是大顶堆),继续调整,【4,5,6】中6最大,交换4和6:

此时,我们就将一个无序序列构造成了一个大顶堆 

建大堆代码实现:

	//将一个数组(二叉树), 调整成一个大顶堆/*** @param arr 待调整的数组* @param i 表示非叶子结点在数组中索引* @param length 表示对多少个元素继续调整, length 是在逐渐的减少*/public  static void adjustHeap(int arr[], int i, int length) {int temp = arr[i];//先取出当前元素的值,保存在临时变量//开始调整//说明//1. k = i * 2 + 1 k 是 i结点的左子结点for(int k = i * 2 + 1; k < length; k = k * 2 + 1) {if(k+1 < length && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值k++; // k 指向右子结点}if(arr[k] > temp) { //如果子结点大于父结点arr[i] = arr[k]; //把较大的值赋给当前结点i = k; //!!! i 指向 k,继续循环比较} else {break;//!}}//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)arr[i] = temp;//将temp值放到调整后的位置}

②.将堆顶元素与末尾元素进行交换,使末尾元素最大,然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素,如此反复,重建,交换:

1).将堆顶元素9和末尾元素4进行交换:

 2).重新构建堆,使其继续满足堆的定义(除去9的数组建堆):

3).后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序:

 

到这里你想必也能理解为什么是建大堆而不是小堆了吧,这个排序(顺序)过程实际就是利用堆顶的元素最大,使其和最后n-1个元素进行交换(数组的大小是逐渐缩小的),最终使得整个序列有序 

heapSort方法实现:

	//编写一个堆排序的方法public static void heapSort(int arr[]) {int temp = 0;//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆,这里是建大堆for(int i = arr.length / 2 -1; i >=0; i--) {adjustHeap(arr, i, arr.length);}/** 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。*/for(int j = arr.length-1;j >0; j--) {//交换temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr, 0, j); }//System.out.println("数组=" + Arrays.toString(arr)); }

 堆排序完整代码:

import java.util.*;
public class HeapSort {
//测试数据public static void main(String[] args){int[] arr = {4,6,8,5,9};heapSort(arr);System.out.println("堆排序:"+Arrays.toString(arr));}public static void heapSort(int[] arr){int temp = 0;for(int i = arr.length / 2 - 1;i >= 0;i--){adjustHeap(arr,i,arr.length);}for(int j = arr.length - 1;j > 0;j--){temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr,0,j);}}public static void adjustHeap(int[] arr,int i,int length){int temp = arr[i];for(int k = 2 * i + 1;k < length;k = k * 2 + 1){if(k + 1 < length && arr[k] < arr[k+1]){k++;}if(arr[k] > temp){arr[i] = arr[k];i = k;}else{break;}}arr[i] = temp;}
}

运行结果:

 很明显,排序成功

堆排序速度测试:

 public static void main(String[] args){// 创建要给8000000个的随机的数组int[] arr = new int[8000000];for (int i = 0; i < 8000000; i++) {arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数}System.out.println("排序前");Date data1 = new Date();SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");String date1Str = simpleDateFormat.format(data1);System.out.println("排序前的时间是=" + date1Str);heapSort(arr);Date data2 = new Date();String date2Str = simpleDateFormat.format(data2);System.out.println("排序前的时间是=" + date2Str);}

 这里给8000000个数组排序,只用了2秒左右,可以看出堆排序的效率是相当的高

小结:

堆排序是一种基于二叉堆数据结构的排序算。它的主要思想是将待排序的元素构建成一个最大堆(或最小堆),然后依次将堆顶元素与堆的最后一个元素交换,并重新调整堆,使得剩余元素仍然满足堆的性质。重复这个过程,直到所有元素都被排序。

堆排序的步骤如下:

  1. 构建最大堆:将待排序的数组看作是一个完全二叉树,从最后一个非叶子节点开始,依次向上调整每个节点,使得每个节点都满足最大堆的性质。
  2. 交换堆顶元素和最后一个元素:将堆顶元素与堆的最后一个元素交换位置,此时最大元素已经排好序。
  3. 调整堆:将剩余元素重新调整为最大堆,再次找到最大元素并交换到堆顶。
  4. 重复步骤2和步骤3,直到所有元素都被排序。

堆排序的时间复杂度为O(nlogn),其中n为待排序数组的长度。它是一种不稳定的排序算法,因为在调整堆的过程中可能会改变相同元素的相对顺序。

博客到这里也是结束了,制作不易,喜欢的小伙伴可以点赞加关注支持下博主,这对我真的很重要~~

 

这篇关于十大经典排序算法之一--------------堆排序(java详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723371

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.