十大经典排序算法之一--------------堆排序(java详解)

2024-02-19 03:36

本文主要是介绍十大经典排序算法之一--------------堆排序(java详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.堆排序基本介绍:

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

 大顶堆&&小顶堆(图解):

  大顶堆:

 其中,二叉树节点外面标注的是堆对应的数组下标,也就是:

小顶堆:

*假设我们有了一个待排序的数组,并且构建好了他的逻辑结构,怎么能通过孩子找到双亲,或者通过双亲找到左右孩子呢?其实也很好理解,我们拿一颗二叉树出来就能很轻易的得出公式:

具体公式:  parent = (child - 1) / 2 ;

                   leftchild = parent * 2 + 1 ;

                   rightchild = parent * 2 + 2 ;

                   rightchild = leftchild + 1;

 二.堆排序详解:

2.1.堆排序的基本思路(这里以顺序排序为主):

  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点
  3. 将其与末尾元素进行交换,此时末尾就为最大值
  4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了

 ①.构建大顶堆:

1).以给定的无序堆为例:

2).此时我们从最后一个非叶子节点开始(叶子节点自然不用调整,最后一个非叶子节点为:

 arr.length / 2 - 1;也就是下面的6节点 ),从左至右,从上至下进行调整:

 3).找到第二个非叶节点4,由于【4,9,8】中9最大,4和9交换:

 4).这时,交换导致了子根【4,5,6】结构混乱(因为我们要建立的是大顶堆),继续调整,【4,5,6】中6最大,交换4和6:

此时,我们就将一个无序序列构造成了一个大顶堆 

建大堆代码实现:

	//将一个数组(二叉树), 调整成一个大顶堆/*** @param arr 待调整的数组* @param i 表示非叶子结点在数组中索引* @param length 表示对多少个元素继续调整, length 是在逐渐的减少*/public  static void adjustHeap(int arr[], int i, int length) {int temp = arr[i];//先取出当前元素的值,保存在临时变量//开始调整//说明//1. k = i * 2 + 1 k 是 i结点的左子结点for(int k = i * 2 + 1; k < length; k = k * 2 + 1) {if(k+1 < length && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值k++; // k 指向右子结点}if(arr[k] > temp) { //如果子结点大于父结点arr[i] = arr[k]; //把较大的值赋给当前结点i = k; //!!! i 指向 k,继续循环比较} else {break;//!}}//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)arr[i] = temp;//将temp值放到调整后的位置}

②.将堆顶元素与末尾元素进行交换,使末尾元素最大,然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素,如此反复,重建,交换:

1).将堆顶元素9和末尾元素4进行交换:

 2).重新构建堆,使其继续满足堆的定义(除去9的数组建堆):

3).后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序:

 

到这里你想必也能理解为什么是建大堆而不是小堆了吧,这个排序(顺序)过程实际就是利用堆顶的元素最大,使其和最后n-1个元素进行交换(数组的大小是逐渐缩小的),最终使得整个序列有序 

heapSort方法实现:

	//编写一个堆排序的方法public static void heapSort(int arr[]) {int temp = 0;//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆,这里是建大堆for(int i = arr.length / 2 -1; i >=0; i--) {adjustHeap(arr, i, arr.length);}/** 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。*/for(int j = arr.length-1;j >0; j--) {//交换temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr, 0, j); }//System.out.println("数组=" + Arrays.toString(arr)); }

 堆排序完整代码:

import java.util.*;
public class HeapSort {
//测试数据public static void main(String[] args){int[] arr = {4,6,8,5,9};heapSort(arr);System.out.println("堆排序:"+Arrays.toString(arr));}public static void heapSort(int[] arr){int temp = 0;for(int i = arr.length / 2 - 1;i >= 0;i--){adjustHeap(arr,i,arr.length);}for(int j = arr.length - 1;j > 0;j--){temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr,0,j);}}public static void adjustHeap(int[] arr,int i,int length){int temp = arr[i];for(int k = 2 * i + 1;k < length;k = k * 2 + 1){if(k + 1 < length && arr[k] < arr[k+1]){k++;}if(arr[k] > temp){arr[i] = arr[k];i = k;}else{break;}}arr[i] = temp;}
}

运行结果:

 很明显,排序成功

堆排序速度测试:

 public static void main(String[] args){// 创建要给8000000个的随机的数组int[] arr = new int[8000000];for (int i = 0; i < 8000000; i++) {arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数}System.out.println("排序前");Date data1 = new Date();SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");String date1Str = simpleDateFormat.format(data1);System.out.println("排序前的时间是=" + date1Str);heapSort(arr);Date data2 = new Date();String date2Str = simpleDateFormat.format(data2);System.out.println("排序前的时间是=" + date2Str);}

 这里给8000000个数组排序,只用了2秒左右,可以看出堆排序的效率是相当的高

小结:

堆排序是一种基于二叉堆数据结构的排序算。它的主要思想是将待排序的元素构建成一个最大堆(或最小堆),然后依次将堆顶元素与堆的最后一个元素交换,并重新调整堆,使得剩余元素仍然满足堆的性质。重复这个过程,直到所有元素都被排序。

堆排序的步骤如下:

  1. 构建最大堆:将待排序的数组看作是一个完全二叉树,从最后一个非叶子节点开始,依次向上调整每个节点,使得每个节点都满足最大堆的性质。
  2. 交换堆顶元素和最后一个元素:将堆顶元素与堆的最后一个元素交换位置,此时最大元素已经排好序。
  3. 调整堆:将剩余元素重新调整为最大堆,再次找到最大元素并交换到堆顶。
  4. 重复步骤2和步骤3,直到所有元素都被排序。

堆排序的时间复杂度为O(nlogn),其中n为待排序数组的长度。它是一种不稳定的排序算法,因为在调整堆的过程中可能会改变相同元素的相对顺序。

博客到这里也是结束了,制作不易,喜欢的小伙伴可以点赞加关注支持下博主,这对我真的很重要~~

 

这篇关于十大经典排序算法之一--------------堆排序(java详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723371

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可