从kafka如何保证数据一致性看通常数据一致性设计

2024-02-18 20:36

本文主要是介绍从kafka如何保证数据一致性看通常数据一致性设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

在数据库系统中有个概念叫事务,事务的作用是为了保证数据的一致性,意思是要么数据成功,要么数据失败,不存在数据操作了一半的情况,这就是数据的一致性。在很多系统或者组件中,很多场景都需要保证数据的一致性,有的是高度的一致性。特别是在交易系统等这样场景。有些组件的数据不一定需要高度保证数据的一致性,比如日志系统。本节从从kafka如何保证数据一致性看通常数据一致性设计。

二、kafka那些环节存在数据不一致性

  1. 数据复制:在Kafka中,数据从主节点(leader)复制到从节点(follower)的过程中,由于网络延迟、节点故障或其他原因,可能导致从节点未能及时获取或处理主节点的数据变更,从而产生数据不一致。
  2. 消息提交:Kafka中的消息提交涉及多个阶段,包括生产者发送消息、消息被写入日志、消息被复制到从节点等。如果在这个过程中发生错误或异常,可能导致消息丢失或重复,进而引发数据不一致。
  3. 消费者处理:消费者在处理消息时,如果因为某些原因(如网络中断、消费者进程崩溃等)未能成功处理消息,而消息又被重新投递给其他消费者处理,也可能导致数据不一致。
  4. 分区重新分配:在Kafka中,如果分区的leader节点发生故障,Kafka会触发分区重新分配,将leader切换到其他节点。在这个过程中,如果切换不及时或切换过程中发生错误,可能导致数据不一致。

三、kafka如何保证数据一致性(内容摘自半亩方塘立身)

我们知道Kafka架构如下,主要由 Producer、Broker、Consumer 三部分组成。一条消息从生产到消费完成这个过程,可以划分三个阶段,生产阶段、存储阶段、消费阶段。

生产阶段: 在这个阶段,从消息在 Producer 创建出来,经过网络传输发送到 Broker 端。

存储阶段: 在这个阶段,消息在 Broker 端存储,如果是集群,消息会在这个阶段被复制到其他的副本上。

消费阶段: 在这个阶段,Consumer 从 Broker 上拉取消息,经过网络传输发送到Consumer上。

那么如何保证消息不丢我们可以从这三部分来分析。

消息传递语义

在深度剖析消息丢失场景之前,我们先来聊聊「消息传递语义」到底是个什么玩意?

所谓的消息传递语义是 Kafka 提供的 Producer 和 Consumer 之间的消息传递过程中消息传递的保证性。主要分为三种。

作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

1. 首先当 Producer 向 Broker 发送数据后,会进行 commit,如果 commit 成功,由于 Replica 副本机制的存在,则意味着消息不会丢失,但是 Producer 发送数据给 Broker 后,遇到网络问题而造成通信中断,那么 Producer 就无法准确判断该消息是否已经被提交(commit),这就可能造成 at least once 语义。

2. 在 Kafka 0.11.0.0 之前, 如果 Producer 没有收到消息 commit 的响应结果,它只能重新发送消息,确保消息已经被正确的传输到 Broker,重新发送的时候会将消息再次写入日志中;而在 0.11.0.0 版本之后, Producer 支持幂等传递选项,保证重新发送不会导致消息在日志出现重复。为了实现这个, BrokerProducer 分配了一个ID,并通过每条消息的序列号进行去重。也支持了类似事务语义来保证将消息发送到多个 Topic 分区中,保证所有消息要么都写入成功,要么都失败,这个主要用在 Topic 之间的 exactly once 语义。 其中启用幂等传递的方法配置enable.idempotence = true启用事务支持的方法配置:设置属性 transcational.id = "指定值"

3. 从 Consumer 角度来剖析, 我们知道 Offset 是由 Consumer 自己来维护的, 如果 Consumer 收到消息后更新 Offset, 这时 Consumer 异常 crash 掉, 那么新的 Consumer 接管后再次重启消费,就会造成 at most once 语义(消息会丢,但不重复)。

4. 如果 Consumer 消费消息完成后, 再更新 Offset,如果这时 Consumer crash 掉,那么新的 Consumer 接管后重新用这个 Offset 拉取消息, 这时就会造成 at least once 语义(消息不丢,但被多次重复处理)。

总结: 默认 Kafka 提供「at least once」语义的消息传递,允许用户通过在处理消息之前保存 Offset的方式提供 「at mostonce」 语义。如果我们可以自己实现消费幂等,理想情况下这个系统的消息传递就是严格的「exactly once」, 也就是保证不丢失、且只会被精确的处理一次,但是这样是很难做到的。

接下来我们从生产阶段、存储阶段、消费阶段这几方面看下kafka如何保证消息不丢失。

生产阶段

通过深入解析Kafka消息发送过程我们知道Kafka生产者异步发送消息并返回一个Future,代表发送结果。首先需要我们获取返回结果判断是否发送成功。

// 异步发送消息,并设置回调函数 
producer.send(record, new Callback() { @Override public void onCompletion(RecordMetadata metadata, Exception exception) {if (exception != null) { System.err.println("消息发送失败: " + exception.getMessage()); } else { System.out.println("消息发送成功到主题: " + metadata.topic() + ", 分区: " + metadata.partition() + ", 偏移量: " + metadata.offset()); } } 
});

 
 

消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

Producer(生产者)保证消息不丢失的方法:

1. 发送确认机制:Producer可以使用Kafka的acks参数来配置发送确认机制。通过设置合适的acks参数值,Producer可以在消息发送后等待Broker的确认。确认机制提供了不同级别的可靠性保证,包括:

• acks=0:Producer在发送消息后不会等待Broker的确认,这可能导致消息丢失风险。

• acks=1:Producer在发送消息后等待Broker的确认,确保至少将消息写入到Leader副本中。

• acks=all或acks=-1:Producer在发送消息后等待Broker的确认,确保将消息写入到所有ISR(In-Sync Replicas)副本中。这提供了最高的可靠性保证。

2. 消息重试机制:Producer可以实现消息的重试机制来应对发送失败或异常情况。如果发送失败,Producer可以重新发送消息,直到成功或达到最大重试次数。重试机制可以保证消息不会因为临时的网络问题或Broker故障而丢失。

 
 

Broker存储阶段

正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

在kafka高性能设计原理中我们了解到kafka为了提高性能用到了 Page Cache 技术.在读写磁盘日志文件时,其实操作的都是内存,然后由操作系统决定什么时候将 Page Cache 里的数据真正刷入磁盘。如果内存中数据还未刷入磁盘服务宕机了,这个时候还是会丢消息的。

为了最大程度地降低数据丢失的可能性,我们可以考虑以下方法:

  1. 持久化配置优化:可以通过调整 Kafka 的持久化配置参数来控制数据刷盘的频率,从而减少数据丢失的可能性。例如,可以降低 flush.messagesflush.ms 参数的值,以更频繁地刷写数据到磁盘。
  2. 副本因子增加:在 Kafka 中,可以为每个分区设置多个副本,以提高数据的可靠性。当某个 broker 发生故障时,其他副本仍然可用,可以避免数据丢失。
  3. 使用acks=all:在生产者配置中,设置 acks=all 可以确保消息在所有ISR(In-Sync Replicas)中都得到确认后才被视为发送成功。这样可以确保消息被复制到多个副本中,降低数据丢失的风险。
  4. 备份数据:定期备份 Kafka 的数据,以便在发生灾难性故障时可以进行数据恢复。

消费阶段

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

  1. 自动提交位移:Consumer可以选择启用自动提交位移的功能。当Consumer成功处理一批消息后,它会自动提交当前位移,标记为已消费。这样即使Consumer发生故障,它可以使用已提交的位移来恢复并继续消费之前未处理的消息。
  2. 手动提交位移:Consumer还可以选择手动提交位移的方式。在消费一批消息后,Consumer可以显式地提交位移,以确保处理的消息被正确记录。这样可以避免重复消费和位移丢失的问题。
作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。// 创建消费者实例
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);// 订阅主题
consumer.subscribe(Collections.singletonList(topic));try {while (true) {// 消费消息ConsumerRecords<String, String> records = consumer.poll(100);for (ConsumerRecord<String, String> record : records) {// 处理消息逻辑System.out.println("消费消息:Topic = " + record.topic() +", Partition = " + record.partition() +", Offset = " + record.offset() +", Key = " + record.key() +", Value = " + record.value());// 手动提交位移TopicPartition topicPartition = new TopicPartition(record.topic(), record.partition());OffsetAndMetadata offsetMetadata = new OffsetAndMetadata(record.offset() + 1);consumer.commitSync(Collections.singletonMap(topicPartition, offsetMetadata));}}
} catch (Exception e) {e.printStackTrace();
} finally {consumer.close();
}

 四、数据一致系统设计特点

从kafka如何保证数据一致性看通常数据一致性设计,一般保证数据一致性,需要通过成功后commit的操作,消费过程中记录小标。成功与失败的环节都记上标志。

Kafka作为一个分布式发布-订阅消息系统,其数据一致性的系统设计特点主要包括以下几个方面:

  1. 分区与副本机制:Kafka将数据分成多个分区(Partition),每个分区在集群中有多个副本(Replica)。这些副本分布在不同的Broker上,以实现数据的冗余备份和高可用性。当某个Broker发生故障时,其他Broker上的副本可以接管服务,保证数据的持续可用。
  2. ISR(In-Sync Replicas)机制:ISR是Kafka中用于维护数据一致性的重要机制。它包含所有与Leader保持同步的副本。当ISR中的副本数量不足时,Kafka会暂停写入操作,以防止数据不一致。只有当ISR中的副本数量恢复到一定数量时,才会恢复写入操作。
  3. 消息提交确认:生产者发送消息到Kafka时,需要等待消息被写入ISR中的副本并得到确认,以确保消息被成功存储。同时,消费者在处理消息时也需要定期提交偏移量(Offset),以便在发生故障时能够从正确的位置继续消费。
  4. 原子性操作:Kafka保证消息在分区内的顺序性和原子性。这意味着在同一分区内的消息会按照发送的顺序被消费,且不会被其他消息插入打断。这有助于保证数据的一致性和正确性。
  5. 容错处理:当Kafka集群中的节点发生故障时,Kafka会自动进行故障转移和恢复操作。这包括从ISR中选择新的Leader、重新同步数据等,以确保数据的持续可用和一致性。

总之,Kafka通过分区与副本机制、ISR机制、消息提交确认、原子性操作和容错处理等手段,确保了其数据一致性的系统设计特点。这些设计使得Kafka能够在分布式环境中实现高吞吐量、持久化存储、可扩展性和高可靠性等特性,从而满足各种复杂场景下的数据一致性需求。

这篇关于从kafka如何保证数据一致性看通常数据一致性设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/722386

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核