【动态规划】【C++算法】2742. 给墙壁刷油漆

2024-02-18 18:12

本文主要是介绍【动态规划】【C++算法】2742. 给墙壁刷油漆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字

本文涉及知识点

动态规划汇总

LeetCode2742. 给墙壁刷油漆

给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time ,分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有两名油漆匠:
一位需要 付费 的油漆匠,刷第 i 堵墙需要花费 time[i] 单位的时间,开销为 cost[i] 单位的钱。
一位 免费 的油漆匠,刷 任意 一堵墙的时间为 1 单位,开销为 0 。但是必须在付费油漆匠 工作 时,免费油漆匠才会工作。
请你返回刷完 n 堵墙最少开销为多少。
示例 1:
输入:cost = [1,2,3,2], time = [1,2,3,2]
输出:3
解释:下标为 0 和 1 的墙由付费油漆匠来刷,需要 3 单位时间。同时,免费油漆匠刷下标为 2 和 3 的墙,需要 2 单位时间,开销为 0 。总开销为 1 + 2 = 3 。
示例 2:
输入:cost = [2,3,4,2], time = [1,1,1,1]
输出:4
解释:下标为 0 和 3 的墙由付费油漆匠来刷,需要 2 单位时间。同时,免费油漆匠刷下标为 1 和 2 的墙,需要 2 单位时间,开销为 0 。总开销为 2 + 2 = 4 。
提示:
1 <= cost.length <= 500
cost.length == time.length
1 <= cost[i] <= 106
1 <= time[i] <= 500

动态规划

动态规划的状态表示

合法状态:付费工人用时大于等于免费工人用时。
注意:第i项工作,付费工人需要time[i]时间,免费工人需要1。所以前i项工作,付费工人用时和免费工人用时之和不固定。
免费工人用时 ∈ \in [0,500],付费工人用时大于等于500,必定可行,所以付费用时用时也 ∈ \in [0,500]。
如果直接暴力处理,空间复杂度:O(n2),处理每份工作时间复杂度O(n),总时间复杂度O(n3)超时。
状态优化
付费工人用时>=免费工人用时 ⟺ \iff 付费工人用时 - 免费工人用时 >=0
付费工人用时 - 免费工人用时 ∈ \in [-500,500] 为了方便可以加上500,变成 ∈ \in [0,100don0]
空间复杂度变成:O(n) 总时间复杂度:O(nn)。

动态规划的转移方程

{ d p [ m i n ( 1000 , j + c o s t [ i ] ) ] = m i n ( , p r e [ j ] + c o s t [ i ] ) 使用付费工人 d p [ j − 1 ] = m i n ( , p r e [ j ] ) \begin{cases} dp[min(1000,j+cost[i])] = min(,pre[j]+cost[i]) & 使用付费工人 \\ dp[j-1] = min(,pre[j]) & \\ \end{cases} {dp[min(1000,j+cost[i])]=min(,pre[j]+cost[i])dp[j1]=min(,pre[j])使用付费工人

动态规划的初始值

dp[500]= 0

动态规划的填表顺序

依次处理各任务。

动态规划返回值

dp[500,1000]的最大值。

代码

核心代码

template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{*seft = min(*seft,(ELE) other);
}template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{*seft = max(*seft, other);
}class Solution {
public:int paintWalls(vector<int>& cost, vector<int>& time) {int n = cost.size();vector<int> pre(n * 2 + 1, m_iNotMay);pre[n] = 0;for (int i = 0; i < cost.size(); i++){vector<int> dp(n * 2 + 1, m_iNotMay);for (int j = 0; j <= n * 2; j++){if (pre[j] >= m_iNotMay){continue;}MinSelf(&dp[min(2 * n, j + time[i])], pre[j] + cost[i]);MinSelf(&dp[j - 1], pre[j]);}pre.swap(dp);}return *std::min_element(pre.begin() + n, pre.end());}const int m_iNotMay = 1e9;
};

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	int n;vector<int> cost,  time;{Solution sln;cost = { 1, 2, 3, 2 }, time = { 1, 2, 3, 2 };auto res = sln.paintWalls(cost, time);Assert(res,3);}{Solution sln;cost = { 2, 3, 4, 2 }, time = { 1, 1, 1, 1 };auto res = sln.paintWalls(cost, time);Assert(res, 4);}}

2023年6月

class Solution {
public:
int paintWalls(vector& cost, vector& time) {
m_c = cost.size();
vector< int> preTimeAddNumToMinCost(m_c+1,INT_MAX);
preTimeAddNumToMinCost[0] = 0;
for (int ii = 0; ii < m_c; ii++)
{
vector< int> dp = preTimeAddNumToMinCost;
for (int j = 0; j < m_c; j++ )
{
if (INT_MAX == preTimeAddNumToMinCost[j])
{
continue;
}
int iTimeAndNum = j + time[ii] + 1 ;
const int iCurCost = preTimeAddNumToMinCost[j] + cost[ii];
iTimeAndNum = min(iTimeAndNum, m_c);
dp[iTimeAndNum] = min(dp[iTimeAndNum], iCurCost);
}
dp.swap(preTimeAddNumToMinCost);
}
return preTimeAddNumToMinCost[m_c];
}
int m_c;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【C++算法】2742. 给墙壁刷油漆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/722030

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二