R语言课程论文-飞机失事数据可视化分析

2024-02-18 14:44

本文主要是介绍R语言课程论文-飞机失事数据可视化分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源:Airplane Crashes Since 1908 (kaggle.com)

代码参考:Exploring historic Air Plane crash data | Kaggle

数据指标及其含义

指标名

含义

Date

事故发生日期(年-月-日)

Time

当地时间,24小时制,格式为hh:mm

Location

事故发生的地点

Operator

航空公司或飞机的运营商

Flight

由飞机操作员指定的航班号

Route

事故前飞行的全部或部分航线

Type

飞机类型

Registration

国际民航组织对飞机的登记

cn/In

结构号或序列号/线号或机身号

Aboard

机上人数

Fatalities

死亡人数

Ground

地面死亡人数

Summary

事故的简要描述和原

library(tidyverse)
library(lubridate)
library(plotly)
library(gridExtra)
library(usmap)
library(igraph)
library(tidytext)
library(tm)
library(SnowballC)
library(wordcloud)
library(RColorBrewer)
library(readxl)df<- read.csv('F:\\Airplane_Crashes_and_Fatalities_Since_1908.csv',stringsAsFactors = FALSE)
df <- as_tibble(df)
head(df)
dim(df)
colnames(df)
df[is.na(df)] <- 0
df$Date <- mdy(df$Date)
df$Time <- hm(df$Time)
df$Year <- year(df$Date)
df$Month <- as.factor(month(df$Date))
df$Day <- as.factor(day(df$Date))
df$Weekday <- as.factor(wday(df$Date))
df$Week_no <- as.factor(week(df$Date))
df$Quarter <- as.factor(quarter(df$Date))
df$Is_Leap_Year <- leap_year(df$Date)
df$Decade <- year(floor_date(df$Date, years(10)))
df$Hour <- as.integer(hour(df$Time))
df$Minute <- as.factor(minute(df$Time))
df$AM_PM <- if_else(am(df$Time), 'AM', 'PM')
df$btwn_6PM_6AM <- if_else(df$Hour <= 6 | df$Hour >= 18, '6PM-6AM', '6AM-6PM')
year_wise <- df %>% count(Year)
day_wise <- df %>% count(Day) 
week_day_wise <- df %>% count(Weekday)
month_wise <- df %>% count(Month)
week_no_wise <- df %>% count(Week_no)
q_wise <- df %>% count(Quarter)
hour_wise <- df %>% count(Hour)
am_pm_wise <- df %>% count(AM_PM)
btwn_6PM_6AM_wise <- df %>% count(btwn_6PM_6AM)
Fatalities_wise <- df %>% count(Fatalities)
#图1:自1980年来每年失事飞机失事次数柱状图
ggplot(year_wise, aes(x = Year, y = n)) +geom_col(fill = '#0f4c75', col = 'white') +labs(title = '自1908年以来每年发生的飞机失事次数', x = '', y = '') +scale_x_continuous(breaks = seq(1908, 2020, 4))

#图2:失事飞机失事次数柱状图(按一周第几天、一月第几天统计)
wd <- ggplot(week_day_wise, aes(x = Weekday, y = n)) +geom_col(fill = '#3b6978', col = 'white')+labs(title = '按周的每一天统计飞机失事次', x = '', y = '')
d <- ggplot(day_wise, aes(x = Day, y = n)) +geom_col(fill = '#b83b5e', col = 'white')+labs(title = '按月的每一天统计飞机失事次', x = '', y = '')
grid.arrange(wd, d, nrow = 1, widths = c(1, 3))

#图3:失事飞机失事次数柱状图(按一年第几月、第几周、第几季度统计)
m <- ggplot(month_wise, aes(x = Month, y = n)) +geom_col(fill = '#ffcb74', col = 'white') +labs(title = '按月统计', x = '', y = '')
wn <- ggplot(week_no_wise, aes(x = Week_no, y = n)) +geom_col(fill = '#4f8a8b', col = 'white') +labs(title = '按周统计', x = '', y = '') 
q <- ggplot(q_wise, aes(x = Quarter, y = n)) +geom_col(fill = '#ea907a', col = 'white') +labs(title = '按季度统计', x = '', y = '')
grid.arrange(m, wn, q, nrow = 1, widths = c(2, 5, 1))

#图4:失事飞机失事次数柱状图(按一天第几小时、一天中上下午度统计)
h <- ggplot(hour_wise, aes(x = Hour, y = n)) +geom_col(fill = '#BD956A') +labs(title = '按小时统计', x = '', y = '')
a <- ggplot(am_pm_wise, aes(x = AM_PM, y = n, fill = AM_PM)) +geom_col() + labs(title = '上午-下午', x = '', y = '') +scale_fill_brewer(palette = "Set1") +theme(legend.position = "none") 
n <- ggplot(btwn_6PM_6AM_wise, aes(x = btwn_6PM_6AM, y = n, fill = btwn_6PM_6AM)) +geom_col() +labs(title = '白天&夜间', x = '', y = '') +scale_fill_brewer(palette = "Dark2") + theme(legend.position = "none") 
grid.arrange(h, a, n, nrow = 1, layout_matrix = rbind(c(1,1,1,1,2),c(1,1,1,1,3)))

#图5:失事飞机型号统计条形图
# 按类型分组
type_wise <- df %>%count(Type, sort = TRUE)
#按制造商提取和分组
main_type_wise <- df %>%#用空字符串替换型号mutate(main_type = str_replace_all(Type, "[A-Za-z]*-?\\d+-?[A-Za-z]*.*", "")) %>% count(main_type, sort = TRUE) %>%# 跳过空字符串行filter(main_type > 'A') 
options(repr.plot.width = 12)
# 失事飞机的型号排名(前20)
ggplot(head(type_wise, 20), aes(reorder(Type, n) , n, fill = n)) +geom_col(fill = 'deepskyblue2') +  geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold") +labs(title = '失事飞机的型号统计', x = '', y = '') +coord_flip()

#图6:失事飞机制造商统计条形图
ggplot(head(main_type_wise, 10), aes(reorder(main_type, n), n, fill = n)) +geom_col(fill = 'deepskyblue2') +geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold") +labs(title = '失事飞机的制造商统计', x = '', y = '')+    coord_flip()

#图7:失事飞机(包括军事飞机)运营商统计条形图
#运营商统计
operator_wise <- df %>%count(Operator, sort = TRUE)
#商业运营商表
main_op_wise <- df %>%# replace all group of words followed by '-'mutate(main_op = str_replace_all(Operator, ' -.*', '')) %>% filter(!str_detect(main_op, '[Mm]ilitary')) %>%filter(!str_detect(main_op, 'Private')) %>%count(main_op, sort = TRUE) %>%filter(main_op > 'A') 
# 提取军事飞行数据
force <- operator_wise %>%filter(str_detect(Operator, '[Mm]ilitary')) %>%mutate(op = str_replace_all(Operator, 'Military ?-? ?', '')) %>%count(op, sort = TRUE)
#提取军事飞机所属国家
force_country <- operator_wise %>%# 获取包含字符串“军用”的行'military'filter(str_detect(Operator, 'Military|military')) %>%# 将带有包含国家信息的字符串替换为国家名mutate(op = str_replace_all(Operator, 'Royal Air Force', 'UK')) %>%mutate(op = str_replace_all(op, 'Military ?-? ?|Royal', '')) %>%mutate(op = str_replace_all(op, ' (Navy|Army|Air|Maritime Self Defense|Marine Corps|Naval|Defence|Armed) ?.*', '')) %>%mutate(op = str_replace_all(op, '.*U\\.? ?S\\.?.*|United States|American', 'USA')) %>%mutate(op = str_replace_all(op, 'Aeroflot ?/? ?', '')) %>%mutate(op = str_replace_all(op, '.*Republic? ?of', '')) %>%mutate(op = str_replace_all(op, '.*British.*', 'UK')) %>%mutate(op = str_replace_all(op, '.*Indian.*', 'Indian')) %>%mutate(op = str_replace_all(op, '.*Chin.*', 'Chinese')) %>%mutate(op = str_replace_all(op, '.*Chilean.*', 'Chilian')) %>%mutate(op = str_replace_all(op, '.*Iran.*', 'Iran')) %>%mutate(op = str_replace_all(op, '.*French.*', 'French')) %>%mutate(op = str_replace_all(op, '.*Ecuador.*', 'Ecuadorean')) %>%mutate(op = str_replace_all(op, '.*Zambia.*', 'Zambian')) %>%mutate(op = str_replace_all(op, '.*Russia.*', 'Russian')) %>%mutate(op = str_replace_all(op, '.*Afghan.*', 'Afghan')) %>%group_by(op) %>%summarize(n = sum(n)) %>%arrange(desc(n)) 
#军用飞行与非军用飞行
yr_military <- df %>%select(Year, Operator) %>%mutate(Is_Military = str_detect(Operator, 'Military|military')) %>%group_by(Year, Is_Military) %>%summarize(n = n())
ggplot(head(operator_wise, 10), aes(reorder(Operator, n) , n, fill = n))+geom_col(fill = 'coral3')+labs(title='失事飞机(包括军事飞机在内)的运营商统计', x = '', y = '')+  geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold")+coord_flip()

#图8:失事飞机(不包括军事飞机)运营商统计条形图
ggplot(head(main_op_wise, 10), aes(reorder(main_op, n) , n, fill=n)) +geom_col(fill='coral2') +labs(title='失事商业飞机(不包括军事飞机)的商业运营商统计', x='', y='') +  geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold") +coord_flip()

#图9:军事飞机所属军队、所属国家统计条形图
f <- ggplot(head(force, 10), aes(reorder(op, n) , n, fill = n))+geom_col(fill = 'cyan4')+labs(title = '军事飞机失事统计', x = '', y = '')+  geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold")+coord_flip()
fc <- ggplot(head(force_country, 10), aes(reorder(op, n) , n, fill = n))+geom_col(fill = 'cyan3')+labs(title = '军事飞机失事的国家排名', x = '', y = '')+  geom_text(aes(label = n), hjust = 1.5, colour = "white", size = 5, fontface = "bold")+coord_flip()
grid.arrange(f,fc, nrow = 1, widths = c(1, 1))

#图10:自1980年来军事飞机与非军事失事次数柱状图
ggplot(yr_military, aes(x = Year, y = n, fill = Is_Military)) +geom_col(col = 'white') +labs(title = '失事飞机是否为军用飞机?',x = '', y = '', fill = '') +scale_x_continuous(breaks = seq(1908, 2020, 4)) + scale_fill_brewer(palette = "Dark2") +theme(legend.position = "top", legend.justification = "left")

#图11:飞机失事地点统计条形图
take_off_dest <- df %>%select('Route') %>%filter(Route!='') %>%filter(str_detect(Route, ' ?- ?')) %>%mutate(Take_Off = str_extract(Route, '[^-]* ?-?')) %>%mutate(Take_Off = str_replace(Take_Off, ' -', ''))%>%mutate(Destination = str_extract(Route, '- ?[^-]*$')) %>%mutate(Destination = str_replace(Destination, '- ?', ''))
route <- take_off_dest %>% count(Route, sort = TRUE)
take_off <- take_off_dest %>% count(Take_Off, sort = TRUE)
dest <- take_off_dest %>% count(Destination, sort = TRUE)
r <- ggplot(head(route, 15), aes(reorder(Route, n) , n, fill=n))+geom_col(fill='#E59CC4')+labs(title='飞行途中失事路线', x='', y='')+  geom_text(aes(label=n), hjust = 1.5, colour="white", size=5, fontface="bold")+coord_flip()
t <- ggplot(head(take_off, 15), aes(reorder(Take_Off, n) , n, fill=n))+geom_col(fill='#005082')+labs(title='起飞时飞机失事地点', x='', y='')+  geom_text(aes(label=n), hjust = 1.5, colour="white", size=5, fontface="bold")+coord_flip()
d <- ggplot(head(dest, 15), aes(reorder(Destination, n) , n, fill=n))+geom_col(fill='#ff6363')+labs(title='落地时飞机失事地点', x='', y='')+  geom_text(aes(label=n), hjust = 1.5, colour="white", size=5, fontface="bold")+coord_flip()
options(repr.plot.width = 18)
grid.arrange(r,t,d, nrow = 1, widths=c(1,1,1))

#图12:全球范围内飞机失事热力图
cntry <- cntry %>%mutate(m = case_when(n >= 100  ~ "100 +",n < 100 & n >= 70 ~ "70 - 100",n < 70 & n >= 40 ~ "40 - 70",n < 40 & n >= 10 ~ "10 - 40",n < 10  ~ "< 10")) %>%mutate(m = factor(m, levels = c("< 10", "10 - 40", "40 - 70", "70 - 100", "100 +")))
world_map <- map_data("world")
map_data <- cntry %>% full_join(world_map, by = c('Country' = 'region')) 
options(repr.plot.width = 18, repr.plot.height = 9)
map_pal = c("#7FC7AF", "#E4B363",'#EF6461',"#E97F02",'#313638')
ggplot(map_data, aes(x = long, y = lat, group = group, fill = m)) +geom_polygon(colour = "white") + labs(title = '全球范围内飞机失事热力图', x = '', y = '', fill = '') +scale_fill_manual(values = map_pal, na.value = 'whitesmoke') + theme(legend.position='right', legend.justification = "top") + guides(fill = guide_legend(reverse = TRUE))

#图13:飞机失事原因词云图
data <- read_excel("F:\\summary.xlsx")
corpus <- Corpus(VectorSource(data))
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removeWords, stopwords("english"))dtm <- TermDocumentMatrix(corpus)
word_freqs <- rowSums(as.matrix(dtm))
wordcloud(names(word_freqs), word_freqs, min.freq = 1, max.words=150,words_distance=0.001,random.order=FALSE,font_path='msyh.ttc',
rot.per=0.05,colors=brewer.pal(8, "Dark2"), backgroundColor = "grey",shape = 'circle',width=3, height=9)

ps:低价出课程论文-多元统计分析论文、R语言论文、stata计量经济学课程论文(论文+源代码+数据集)

这篇关于R语言课程论文-飞机失事数据可视化分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721486

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义