蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记

2024-02-18 08:20

本文主要是介绍蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 bfs广度优先搜索

1.1 是什么

1.2怎么实现

2案例学习

2.1.走迷宫

 2.2.P1443 马的遍历

2.3. 九宫重排(看答案学的,实在写不来)

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

2.5. 长草

 3.总结


1 bfs广度优先搜索

【Python搜索算法】广度优先搜索(BFS)算法原理详解与应用,示例+代码_广度优先算法的路径搜索代码-CSDN博客

1.1 是什么

        看了其他大佬的分享之后,我理解的广度优先搜索是一种图遍历的算法,简单来说是他的访问规则是一层一层的访问,先访问距离节点近的数据,再逐层拓展访问远的数据。与广度优先搜索密切相关的数据类型叫做队列。队列我们可以理解为是日常生活中排队所形成的队形,先进先出是队列最大的特点。

1.2怎么实现

BFS算法的步骤如下:

  1. 初始化:选择一个起始节点,将其标记为已访问,并将其放入队列中(作为起始节点)。
  2. 进入循环:重复以下步骤,直到队列为空。 a. 从队列中取出一个节点。 b. 访问该节点。 c. 将所有未访问的相邻节点加入队列。 d. 标记已访问的节点,以避免重复访问。
  3. 结束循环:当队列为空时,表示已经遍历完整个图。

算法原理:

        BFS的工作原理是通过队列数据结构来管理待访问的节点。它从起始节点开始,然后逐一访问该节点的相邻节点,并将它们加入队列。然后,它从队列中取出下一个节点进行访问,以此类推。这确保了节点按照它们的距离从起始节点逐层遍历,因此BFS可以用于查找最短路径。

        BFS是一个宽度优先的搜索,它在查找最短路径等问题中非常有用。它不会陷入深度过深的路径,因为它会优先探索距离起始节点更近的节点。

总结:广度优先搜索一般来说都会有一个队列去存储节点,同时也会有一个数组去记录访问的状态。 

2案例学习

2.1.走迷宫

输入:

5 5 
1 0 1 1 0
1 1 0 1 1 
0 1 0 1 1
1 1 1 1 1
1 0 0 0 1
1 1 5 5 

输出:

8

         说明一下这道题的思路,这道题非常直观体现了BFS,并且是最基本的BFS。那代码的思路是怎么样的呢?我们来捋一下。

        一开始所说的队列其实就是列表,只是用到了队列的特点,也就是说队列其实就是类似于列表,只是这个算法的思路用到了队列的特点,一开始我想得太复杂了,总以为队列是一个很高级的容器,其实简单理解就是列表。

        那根据BFS的算法思路:

  1. 初始化:将迷宫的起点作为起始节点        queue=[(x1-1,y1-1,step)]
  2. 进入循环:循环终止的条件是什么,当列表为空就终止了       while queue:                    怎么取出列表的第一个元素,这个时候就是队列的特点,先进先出,怎么体现在列表中,进去就是存入,出来就是删除      x,y,step=queue.pop(0)                                          这里页需要注意走迷宫有上下左右四个方向对应的就是坐标的变化,这也是我对子节点的一个理解

         同时已经访问过的点也要做好标记

        我当时还有一个特别想不懂的,哈哈哈哈哈哈,想起来感觉自己特别蠢哈哈哈哈哈。

        怎么着,我想着每一个节点都有四个子节点,那意味着线路会不一样,怎么就知道那一个的step是最小的,结果我看到那个判断的出口就一下子大悟了,最短路径嘛,那早点满足出口条件的不就是最短路径嘛

n, m = map(int,input().split())
data = []
d = [[1,0],[-1,0],[0,1],[0,-1]]
for i in range(n):l = list(map(int,input().split()))data.append(l)
x1, y1, x2, y2 = map(int,input().split())
def bfs(x1,y1,step):queue=[(x1-1,y1-1,step)]while queue:x,y,step=queue.pop(0)if x==x2-1 and y==y2-1:return stepfor xx,yy in d:dx = x+xxdy = y+yyif 0<= dx <n and 0<= dy <m and data[dx][dy] :data[dx][dy]=0queue.append((dx,dy,step+1))return -1
print(bfs(x1,y1,0))
 2.2.P1443 马的遍历

做好久了但是还是没有完全通过,怎么办可以帮忙看看嘛 

n, m, x, y= map(int,input().split())
d = [[-1,2],[-2,1],[-2,-1],[-1,-2],[1,2],[2,1],[2,-1],[1,-2]]
data = []
result = [[0 for _ in range(m)]for _ in range(n)]
for i in range(1,n+1):for j in range(1,m+1):data.append([i,j])
from collections import deque
def bfs(x,y,a,b,step,visit):queue = deque([(x,y,step)])while len(queue) != 0:x1, y1, step = queue.popleft()if x1 == a and y1 == b:return stepfor xx,yy in d:dx = x1+xxdy = y1+yyif dx < 1 or dx > n or dy < 1 or dy > m:continueif visit[dx][dy] == 0:visit[dx][dy] = 1queue.append((dx, dy, step + 1))return -1for i,j in data:visit = [[0 for _ in range(m + 1)] for _ in range(n + 1)]visit[x][y] = 1ans = bfs(x,y,i,j,0,visit)result[i-1][j-1] = ans
for i in result:for j in i:print(j,end='\t')print('\n',end='')

2.3. 九宫重排(看答案学的,实在写不来)

6.九宫重排 - 蓝桥云课 (lanqiao.cn)

        我当时自己做的时候就在纠结到底是移动格子还是移动数字,很显然,如果要移动数字那每个数字都需要移动,但是移动格子的话我们只需要对这个格子进行操作就可以了。所以移动格子是最佳方案。

         以下是我自己写的错误代码,真的是错的离谱,纪念一下我稀里糊涂的脑子

start = input()
end = input()map1 = [[0 for _ in range(3)] for _ in range(3)]
map2 = [[0 for _ in range(3)] for _ in range(3)]
k1, k2 = 0, 0
for i in range(3):for j in range(3):map1[i][j] = start[k1]if start[k1] == '.':a, b = i, jk1 += 1
for i in range(3):for j in range(3):map2[i][j] = end[k2]k2 += 1d = [[1,0],[-1,0],[0,1],[0,-1]]def bfs(a,b,step):global map1visit = [[0 for _ in range(3)] for _ in range(3)]queue = [(a,b,step)]visit[a][b] = 1while queue:x, y, step = queue.pop(0)if map1 == map2:return stepfor xx,yy in d:dx = x+xxdy = y+yyif dx<0 or dx>2 or dy<0 or dy>2:continueif visit[dx][dy] == 0:visit[dx][dy] = 1map1[x][y],map1[dx][dy] = map1[dx][dy],map1[x][y]queue.append((dx,dy,step+1))return -1
print(bfs(a,b,0))

         别人大佬的代码代码写的真好

蓝桥杯:九宫格重排【BFS】【Python】_重排九宫问题bfs-CSDN博客

        当然我在别人的代码上加上了一些修改以及注释,主要是得自己看得懂

        我也反思了一下自己写的代码思路和别人的,我在一维和二维的变换上处理的十分混乱,导致自己都不知道到底是个什么事儿,因为我也知道是去移动格子,然后交换,但是我就很混乱。当然我的思路还有一些错误。

        别人的代码思路这一点我真是没想到,就是用字典的键值对去存储每一次移动格子后所形成的新字符串的步数,一旦相等了就可以直接返回。

start = input()
end = input()from collections import deque
def bfs():# 创建容器并初始化# 创建字典存储每次变换字符串的步数dic = {}dic[start] = 0# 创建队列queue = deque()queue.append(start)d = [[1, 0], [-1, 0], [0, 1], [0, -1]]# 进入循环while queue:now_start = list(queue.popleft())# 循环结束出口if "".join(now_start) == end:return dic["".join(now_start)]point = now_start.index('.')# 一维的下标转换为二维下标:# 转换公式:x = index//二维数组的宽度    y = index%二维数组的宽度x = point // 3y = point % 3step = dic["".join(now_start)]for xx,yy in d:dx = x+xxdy = y+yyif dx>=0 and dx<3 and dy>=0 and dy<3:new_start = now_start.copy()# 二维转一维# 转换公式:index = x*二维数组的宽度 + ynew_start[point],new_start[dx*3+dy] = new_start[dx*3+dy],new_start[point]if "".join(new_start) not in dic.keys():# dic.setdefault("".join(new_start),step+1)dic["".join(new_start)] = step+1queue.append("".join(new_start))return -1print(bfs())

 

 知识点笔记:

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

1.青蛙跳杯子 - 蓝桥云课 (lanqiao.cn)

        那学完九宫重排之后写这道题就非常简单了,并且这道题还是一维的,不用转换,其他思路跟九宫重排一模一样。

        题目中所说的三种动作,虽然说是青蛙的跳动,但是把当作杯子的跳动去处理就会简单很多,总之学完九宫重排之后这道题就是很简单了。

start = input()
end = input()from collections import deque
def bfs():d = [1, -1, 2, -2, 3, -3]queue = deque()queue.append(start)dic = {}dic[start] = 0while queue:now_start = list(queue.popleft())point = now_start.index('*')step = dic["".join(now_start)]if "".join(now_start) == end:return dic["".join(now_start)]for xx in d:dx = point+xxnew_start = now_start.copy()if dx in range(0, len(start)):new_start[point], new_start[dx] = new_start[dx], new_start[point]if "".join(new_start) not in dic.keys():dic["".join(new_start)] = step+1queue.append("".join(new_start))return -1print(bfs())

2.5. 长草

0长草 - 蓝桥云课 (lanqiao.cn)

        这道题一开始的思路是想到了非连通图的遍历,然后我就是这么一个思路,先找到一个初始化的点先进行广度优先搜索,只进行K层的搜索,但是我一直都无法找到怎样去把握让搜索测层数是我想要的,不知道这个怎么解决,在这里遇到了大问题,然后再遍历我的地图看看还有没有另外的点需要搜索的。所以这个思路就需要两个数组,一个是队列,一个是记录我的访问状态,但是我并没有解决。

        然后就换了一个思路,将节点先依次入队,再对每一个节点进行广度优先搜索,这个就比较好控制,多少层那我就调用多少次的bfs。这里有一个点就在于我的while循环的出口是与队列的长度有关(或者是说节点的个数),因为队列只有把所有的节点都遍历完成之后才算。

        总之这道题也是一道与之前有着一点区别的,也可以算作是遍历非连通图的一种方法。

n, m = map(int,input().split())
maps = []
for i in range(n):l = list(input())maps.append(l)
k = int(input())from collections import deque
queue = deque()
for i in range(n):for j in range(m):if maps[i][j] == 'g':queue.append((i,j))d = [[1,0],[-1,0],[0,1],[0,-1]]
def bfs():ans = len(queue)while ans:x1, y1 = queue.popleft()for xx,yy in d:dx = x1+xxdy = y1+yy# if dx<0 or dx>=n or dy<0 or dy>=m:#     continuif 0<=dx<n and 0<=dy<m and maps[dx][dy] == '.':maps[dx][dy] = 'g'queue.append((dx,dy))ans -= 1for i in range(k):bfs()
for i in maps:print(''.join(i))

 

 3.总结

学习还在继续,持续学习加油!!!!

这篇关于蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720586

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财