基于SFLA算法的神经网络优化matlab仿真

2024-02-18 04:44

本文主要是介绍基于SFLA算法的神经网络优化matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 SFLA的基本原理

4.2 神经网络优化

5.完整程序


1.程序功能描述

       基于SFLA算法的神经网络优化。通过混合蛙跳算法,对神经网络的训练进行优化,优化目标位神经网络的训练误差,通过优化,使得训练误差越来越小,从而完成神经网络权值的优化。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.....................................................................
% 定义神经元数量  
Nnet       = 12;
% 创建一个前馈神经网络,训练函数为'traingdx'  
NET        = feedforwardnet(Nnet,'traingdx');
% 使用Pin作为输入,Pout作为目标来训练神经网络,训练结果存储在tr中  
[NET,~]    = train(NET,Pin,Pout);
% 计算神经网络的性能
Performace = perform(NET,Pin,Pout); 
%定义目标函数
jobs       = @(x) func_mse(x,NET,Pin,Pout);%SFLA算法% 优化后的权重和偏置存储在x中,误差存储在err_ga中  
[x, ~]     = func_sfla(jobs, RC*Nnet+Nnet+Nnet+1);
%优化后的网络,使用优化后的权重和偏置更新神经网络  
NET        = setwb(NET, x');% 计算优化后的神经网络误差  
Outputs=NET(Pin);
TestOutputs=NET(Tin);err1=Pout-Outputs;
err2=Tout-TestOutputs;figure;
subplot(2,2,1)
plot(Pout,'b');  
hold on;
plot(Outputs,'r');
legend('训练集的真实值','训练集的预测值');subplot(2,2,2)
plot(Tout,'b'); 
hold on;
plot(TestOutputs,'r');
legend('测试集的真实值','测试集的预测值');subplot(2,2,3)
plot(err1,'linewidth',2); 
legend('训练集误差');
ylim([-0.5,0.5]);subplot(2,2,4)
plot(err2,'linewidth',2);  
legend('测试集误差');
ylim([-0.5,0.5]);figure;
subplot(1,2,1)
[yfits,gof] = fit(Pout',Outputs','poly3');
plot(Pout',Outputs','o');
hold on
plot(yfits,'k-','predobs');
xlabel('真实值');
ylabel('预测输出值');   subplot(1,2,2)
[yfits,gof] = fit(Tout',TestOutputs','poly3');
plot(Tout',TestOutputs','o');
hold on
plot(yfits,'r-','predobs');  
xlabel('真实值');
ylabel('预测输出值');   
29

4.本算法原理

        神经网络优化是一个复杂的问题,通常涉及到权重和偏置的调整,以便最小化训练误差。SFLA是一种启发式搜索算法,它结合了蛙跳算法和遗传算法的特点,用于求解全局优化问题。在神经网络优化中,SFLA可以用于寻找最优的权重和偏置,从而改善网络的性能。

4.1 SFLA的基本原理

        SFLA的基本原理是将搜索空间中的解(即神经网络的权重和偏置)视为“蛙群”。算法通过模拟蛙群的跳跃行为来搜索解空间,寻找最优解。

  • 初始化:随机生成一组初始解(蛙群),每个解代表神经网络的一组权重和偏置。
  • 分组:将蛙群按照适应度(如训练误差)排序,并分成若干个子群。
  • 局部搜索:在每个子群内,进行蛙跳操作,即根据一定的规则和步长更新解的位置(权重和偏置)。
  • 全局信息交流:定期将各个子群的最优解进行交换,以促进全局搜索。
  • 迭代:重复上述步骤,直到满足停止准则(如达到最大迭代次数或解的质量不再显著提高)。

4.2 神经网络优化

       通过SFLA算法对神经网络参数进行全局优化,可以有效地探索参数空间并找到更优的神经网络结构配置,从而提高模型的预测性能。

       基于SFLA的神经网络优化是一种有效的全局优化方法。它通过模拟蛙群的跳跃行为来搜索解空间,结合局部搜索和全局信息交流的策略,能够在复杂的搜索空间中找到近似最优解。然而,为了获得更好的性能,可能需要对SFLA的参数(如子群大小、跳跃步长等)进行仔细调整。此外,与其他优化算法(如遗传算法、粒子群优化等)的结合也是值得研究的方向。

5.完整程序

VVV

这篇关于基于SFLA算法的神经网络优化matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720095

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML