时间序列预测模型:ARIMA模型

2024-02-17 19:12

本文主要是介绍时间序列预测模型:ARIMA模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. ARIMA模型原理介绍

ARIMA模型,全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是一种常用的时间序列预测方法。ARIMA模型通过对时间序列数据的差分化处理,使非平稳时间序列数据变得平稳,进而利用自回归(AR)滑动平均(MA) 模型对其进行建模和预测。ARIMA模型可以表示为ARIMA(p, d, q),其中:

p:自回归项的阶数,表示预测值与过去值之间的关系。

d:差分次数,使序列平稳所需的差分次数。

q:移动平均项的阶数,表示预测误差与过去误差之间的关系。

2. 实例分析

接下来我们使用一个销售数据来进行ARIMA预测,数据第1列为日期,第2列为销量,利用现有数据预测未来10天的销量数据。

(1)首先读取数据,如何绘制历史数据变化趋势图。

clc,clear
T = readtable('arima_data.xls');
T.Properties.VariableNames
dates=T.x__
sales=T.x___1
plot(dates, sales);
xlabel('日期');
ylabel('销量');
title('销量随时间的变化');

结果如下:

(2)进行平稳性检验、ACF检验、PACF检验,然后确定最合适的p、d、q组合。

% 使用 adftest 检查平稳性
isStationary = adftest(sales);
if ~isStationary% 如果非平稳,进行一阶差分salesDiff = diff(sales);% 重新检查差分后序列的平稳性isStationary = adftest(salesDiff);% 如果还是非平稳,可能需要进行更多的差分操作
end
% 绘制ACF和PACF图
figure;
subplot(2,1,1);
autocorr(salesDiff); % 对差分后的序列绘制ACF图
subplot(2,1,2);
parcorr(salesDiff); % 对差分后的序列绘制PACF图
% 尝试多个p和q的组合
minBIC = Inf;
bestModel = [];
for p = 0:3 % 假设测试p的范围为0到3for q = 0:3 % 假设测试q的范围为0到3model = arima(p,1,q);[fit,~,logL] = estimate(model, sales, 'Display', 'off');[aic,bic] = aicbic(logL, p+q+1, length(sales));if bic < minBICminBIC = bic;bestModel = fit;endend
end
bestModel

平稳性检验: 非平稳

ACF检验和PACF检验:


最优模型:

(3)建立模型进行预测

model = arima(1,1,0); % ARIMA(1,1,0)模型
fitModel = estimate(model, sales);
numPeriods = 10; % 预测未来10个时间点
[forecast, ~, ~] = forecast(fitModel, numPeriods, 'Y0', sales)
futureDates = dates(end) + (1:numPeriods)' % 生成未来日期
figure;
plot([dates;futureDates(1)], [sales;forecast(1)], 'b', futureDates, forecast, 'r'); % 绘制实际销量和预测销量
xlabel('日期');
ylabel('销量');
legend({'实际销量', '预测销量'}, 'Location', 'best');
title('销量预测');

ARIMA(1,1,0)模型:

ARIMA(1,1,0) Model (Gaussian Distribution):Value     StandardError    TStatistic      PValue  _______    _____________    __________    __________Constant     23.116        13.829         1.6716        0.094607
AR{1}       0.54589       0.11588          4.711       2.465e-06
Variance     5389.9        1084.4         4.9705      6.6791e-07

预测结果图:

这篇关于时间序列预测模型:ARIMA模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718730

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间