时间序列预测模型:ARIMA模型

2024-02-17 19:12

本文主要是介绍时间序列预测模型:ARIMA模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. ARIMA模型原理介绍

ARIMA模型,全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是一种常用的时间序列预测方法。ARIMA模型通过对时间序列数据的差分化处理,使非平稳时间序列数据变得平稳,进而利用自回归(AR)滑动平均(MA) 模型对其进行建模和预测。ARIMA模型可以表示为ARIMA(p, d, q),其中:

p:自回归项的阶数,表示预测值与过去值之间的关系。

d:差分次数,使序列平稳所需的差分次数。

q:移动平均项的阶数,表示预测误差与过去误差之间的关系。

2. 实例分析

接下来我们使用一个销售数据来进行ARIMA预测,数据第1列为日期,第2列为销量,利用现有数据预测未来10天的销量数据。

(1)首先读取数据,如何绘制历史数据变化趋势图。

clc,clear
T = readtable('arima_data.xls');
T.Properties.VariableNames
dates=T.x__
sales=T.x___1
plot(dates, sales);
xlabel('日期');
ylabel('销量');
title('销量随时间的变化');

结果如下:

(2)进行平稳性检验、ACF检验、PACF检验,然后确定最合适的p、d、q组合。

% 使用 adftest 检查平稳性
isStationary = adftest(sales);
if ~isStationary% 如果非平稳,进行一阶差分salesDiff = diff(sales);% 重新检查差分后序列的平稳性isStationary = adftest(salesDiff);% 如果还是非平稳,可能需要进行更多的差分操作
end
% 绘制ACF和PACF图
figure;
subplot(2,1,1);
autocorr(salesDiff); % 对差分后的序列绘制ACF图
subplot(2,1,2);
parcorr(salesDiff); % 对差分后的序列绘制PACF图
% 尝试多个p和q的组合
minBIC = Inf;
bestModel = [];
for p = 0:3 % 假设测试p的范围为0到3for q = 0:3 % 假设测试q的范围为0到3model = arima(p,1,q);[fit,~,logL] = estimate(model, sales, 'Display', 'off');[aic,bic] = aicbic(logL, p+q+1, length(sales));if bic < minBICminBIC = bic;bestModel = fit;endend
end
bestModel

平稳性检验: 非平稳

ACF检验和PACF检验:


最优模型:

(3)建立模型进行预测

model = arima(1,1,0); % ARIMA(1,1,0)模型
fitModel = estimate(model, sales);
numPeriods = 10; % 预测未来10个时间点
[forecast, ~, ~] = forecast(fitModel, numPeriods, 'Y0', sales)
futureDates = dates(end) + (1:numPeriods)' % 生成未来日期
figure;
plot([dates;futureDates(1)], [sales;forecast(1)], 'b', futureDates, forecast, 'r'); % 绘制实际销量和预测销量
xlabel('日期');
ylabel('销量');
legend({'实际销量', '预测销量'}, 'Location', 'best');
title('销量预测');

ARIMA(1,1,0)模型:

ARIMA(1,1,0) Model (Gaussian Distribution):Value     StandardError    TStatistic      PValue  _______    _____________    __________    __________Constant     23.116        13.829         1.6716        0.094607
AR{1}       0.54589       0.11588          4.711       2.465e-06
Variance     5389.9        1084.4         4.9705      6.6791e-07

预测结果图:

这篇关于时间序列预测模型:ARIMA模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718730

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符