Matplotlib魅力揭秘:多彩直方图绘制技巧与实战【第56篇—python:Matplotlib多彩直方图绘制】

本文主要是介绍Matplotlib魅力揭秘:多彩直方图绘制技巧与实战【第56篇—python:Matplotlib多彩直方图绘制】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Matplotlib魅力揭秘:多彩直方图绘制技巧与实战
    • 1. 普通直方图
    • 2. 多变量直方图
    • 3. 堆叠直方图
    • 4. 分组直方图
    • 5. 多个子图直方图
    • 6. 折线直方图
    • 7. 曲线直方图
    • 8. 绘制密度直方图
    • 9. 自定义直方图颜色和样式
    • 结语

Matplotlib魅力揭秘:多彩直方图绘制技巧与实战

Matplotlib是一个强大的数据可视化库,广泛用于绘制各种图表,其中直方图是数据分析中常用的一种图表类型。在本文中,我们将探讨Matplotlib中不同种类的直方图,并提供相应的代码实例。我们将介绍普通直方图、多变量直方图、堆叠直方图、分组直方图、多个子图直方图、折线直方图和曲线直方图。

解决中文乱码:

plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题

1. 普通直方图

普通直方图是最基本的形式,用于展示单一变量的分布情况。

import matplotlib.pyplot as plt
import numpy as npdata = np.random.randn(1000)  # 生成随机数据
plt.hist(data, bins=30, color='skyblue', edgecolor='black')
plt.title('普通直方图')
plt.xlabel('值')
plt.ylabel('频率')
plt.show()

在上述代码中,我们使用np.random.randn生成1000个随机数,然后通过plt.hist绘制普通直方图,其中bins参数表示直方图的箱子数量。

2. 多变量直方图

多变量直方图适用于展示两个变量之间的关系。

import matplotlib.pyplot as plt
import numpy as npx = np.random.randn(1000)
y = 2 * x + np.random.randn(1000)  # 创建两个相关的变量plt.hist2d(x, y, bins=30, cmap='Blues')
plt.colorbar()
plt.title('多变量直方图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()

上述代码中,我们使用plt.hist2d绘制多变量直方图,其中bins参数同样表示箱子的数量,cmap参数设置颜色映射。

image-20240204013800127

3. 堆叠直方图

堆叠直方图用于比较多个组的分布,并将它们堆叠在一起。

import matplotlib.pyplot as plt
import numpy as npdata1 = np.random.randn(1000)
data2 = np.random.randn(1000)plt.hist([data1, data2], bins=30, stacked=True, color=['skyblue', 'orange'], edgecolor='black')
plt.title('堆叠直方图')
plt.xlabel('值')
plt.ylabel('频率')
plt.legend(['数据1', '数据2'])
plt.show()

在上述代码中,我们使用plt.hist传入两组数据,并将stacked参数设置为True以实现堆叠效果。

4. 分组直方图

分组直方图用于在同一图表中比较多组数据的分布情况。

import matplotlib.pyplot as plt
import numpy as npdata1 = np.random.randn(1000)
data2 = np.random.randn(1000)plt.hist([data1, data2], bins=30, color=['skyblue', 'orange'], edgecolor='black', alpha=0.7)
plt.title('分组直方图')
plt.xlabel('值')
plt.ylabel('频率')
plt.legend(['数据1', '数据2'])
plt.show()

在上述代码中,我们同样使用plt.hist传入两组数据,通过alpha参数设置透明度。

5. 多个子图直方图

多个子图直方图用于在同一画布中展示多个直方图。

import matplotlib.pyplot as plt
import numpy as npdata1 = np.random.randn(1000)
data2 = np.random.randn(1000)fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))axes[0].hist(data1, bins=30, color='skyblue', edgecolor='black')
axes[0].set_title('数据1直方图')
axes[0].set_xlabel('值')
axes[0].set_ylabel('频率')axes[1].hist(data2, bins=30, color='orange', edgecolor='black')
axes[1].set_title('数据2直方图')
axes[1].set_xlabel('值')
axes[1].set_ylabel('频率')plt.show()

在上述代码中,我们使用plt.subplots创建一个包含两个子图的画布,并分别绘制两组数据的直方图。

image-20240204013735273

6. 折线直方图

折线直方图在直方图的基础上加入折线,用于更直观地表示分布趋势。

import matplotlib.pyplot as plt
import numpy as npdata = np.random.randn(1000)counts, edges, _ = plt.hist(data, bins=30, color='skyblue', edgecolor='black', alpha=0.7)
bin_centers = 0.5 * (edges[:-1] + edges[1:])plt.plot(bin_centers, counts, linestyle='dashed', color='red')
plt.title('折线直方图')
plt.xlabel('值')
plt.ylabel('频率')
plt.show()

在上述代码中,我们通过plt.hist获取直方图的计数和边缘,然后通过plt.plot绘制折线。

7. 曲线直方图

曲线直方图在直方图的基础上加入平滑曲线,用于更平滑地表示分布。

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import normdata = np.random.randn(1000)plt.hist(data, bins=30, density=True, color='skyblue', edgecolor='black', alpha=0.7)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, np.mean(data), np.std(data))
plt.plot(x, p, 'k', linewidth=2)
plt.title('曲线直方图')
plt.xlabel('值')
plt.ylabel('概率密度')
plt.show()

在上述代码中,我们使用scipy.stats.norm生成正态分布曲线,并通过plt.plot将其添加到直方图上。

通过这些示例,你可以更好地理解Matplotlib中不同种类直方图的

绘制方式以及相关参数的使用。在实际应用中,你可以根据数据的特点选择合适的直方图类型,以更清晰地展示数据分布。

绘制方法以及各种参数的使用。这些不同类型的直方图有助于更全面、多样地呈现数据分布,提高数据可视化的表现力。

通过调整不同参数,我们可以实现各种直方图的效果。以下是一些常用参数的说明:

  • bins: 指定直方图的箱子数量,控制数据的分组粒度。
  • color: 设置直方图的颜色。
  • edgecolor: 设置直方图边缘的颜色。
  • alpha: 控制图表元素的透明度。
  • stacked: 用于堆叠直方图,将多组数据堆叠在一起。
  • cmap: 用于多变量直方图,设置颜色映射。
  • legend: 在图表中添加图例,用于标识不同组的数据。
  • subplots: 用于创建多个子图,可以指定子图的行数和列数。
  • linestyle: 设置折线的样式,如实线、虚线等。
  • density: 设置为True时,将直方图转换为概率密度图。
  • pdf: 在曲线直方图中,用于绘制概率密度函数。

通过灵活运用这些参数,你可以根据具体的数据特点和需求,绘制出更加美观和富有信息的直方图图表。

在实际应用中,可以根据数据的不同特性选择合适的直方图类型,以更好地理解数据的分布规律,支持决策和分析过程。同时,结合其他数据可视化工具和技术,能够更全面地呈现数据的内在关系,为数据科学和分析工作提供有力的支持。

8. 绘制密度直方图

密度直方图用于更直观地表示数据分布的概率密度,通过核密度估计平滑地展示数据的概率密度函数。

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as npdata = np.random.randn(1000)sns.histplot(data, kde=True, color='skyblue', edgecolor='black')
plt.title('密度直方图')
plt.xlabel('值')
plt.ylabel('密度')
plt.show()

在上述代码中,我们使用Seaborn库的histplot函数,设置kde=True来添加核密度估计曲线。

image-20240204013712561

9. 自定义直方图颜色和样式

你可以通过更详细的样式设置,进一步美化直方图。

import matplotlib.pyplot as plt
import numpy as npdata = np.random.randn(1000)plt.hist(data, bins=30, color='#7f86c7', edgecolor='black', linewidth=1.2, alpha=0.7)
plt.title('自定义颜色和样式直方图')
plt.xlabel('值')
plt.ylabel('频率')
plt.show()

在上述代码中,我们使用十六进制颜色码#7f86c7设置直方图的颜色,并通过linewidth参数设置边缘线的宽度。

结语

通过以上代码实例,我们探讨了Matplotlib库中绘制不同类型直方图的方法和常用参数。直方图是数据分析和可视化中的重要工具,通过合理选择不同类型直方图,可以更全面、清晰地呈现数据的分布情况。

在实际应用中,你可以根据数据的特点和分析目的选择合适的直方图类型,并通过调整参数来美化图表。同时,结合其他数据可视化技术,如散点图、箱线图等,可以更全面地理解数据,为科学研究和业务决策提供支持。

希望本文的代码实例能够帮助你更好地理解和使用Matplotlib中的直方图绘制功能。

这篇关于Matplotlib魅力揭秘:多彩直方图绘制技巧与实战【第56篇—python:Matplotlib多彩直方图绘制】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717891

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数