08MARL深度强化学习——模型种类

2024-02-17 09:04

本文主要是介绍08MARL深度强化学习——模型种类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1、训练与执行的模型
  • 2、Centralised Training and Execution
    • 2.1 Example——central learning
    • 2.2 局限性
  • 3、Decentralised Training and Execution
    • 3.1 Example——independent learning
    • 3.2局限性
  • 4、Centralised Training with Decentralised Execution
    • 4.1 Example——AC
    • 5、总结


前言

在RL学习的章节当中,学习了tubular的方法,其受限于只能更新访问过的状态价值,因此其并不能推断出未访问状态的价值导致算法并不能有效的评估所有状态的价值,因此我们能够训练一个神经网络来近似巨大的输入状态空间,深度强化学习就是训练一个参数化的价值函数或策略用于RL当中,后续学习是将深度强化学习应用到MARL当中,解决更加复杂的任务


1、训练与执行的模型

MARL算法能够根据训练与执行阶段利用的信息进行分类,在训练阶段每个智能体是局部可观测的,称为去中心化训练;在训练阶段能够利用所有智能体的信息,称为中心化训练;在执行阶段利用历史的局部观测,称为去中心化执行;在执行阶段利用所有智能体的全部信息,称为中心化执行

2、Centralised Training and Execution

中心化学习与执行的方法:在训练与执行阶段使用全局共享的信息,这些信息包括局部观测历史、价值函数、学习的世界模型等等,在此类方法中,明显与POSG环境相悖,因此智能体并不局限于局部可观测的信息,因此此类方法可以考虑为具有特权信息,能够获取其他智能体的全部信息

2.1 Example——central learning

中心化学习的算法便是基于此类方法的例子,中心化学习通过使用联合的历史观测序列训练一个中心化的策略将多智能体问题转化为单智能体问题

2.2 局限性

在训练过程需要将联合奖励转化为单一奖励,在一些过程中难以实现;联合动作状态空间随着智能体数量增加呈指数上升;分布的实体之间无法实时交流

3、Decentralised Training and Execution

去中心化训练与执行:在训练阶段与执行阶段是完全去中心化的,并不依赖于中心化的信息共享

3.1 Example——independent learning

独立学习算法每个智能体忽略其他智能体的存在使用单智能体RL算法训练其策略,具有拓展性、以及克服分布实体无法交流等优势

3.2局限性

无法使用所有智能体的信息进行训练;环境非平稳性造成的无法训练

4、Centralised Training with Decentralised Execution

中心化训练分散执行:在训练过程使用中心化的训练方式,而策略采用去中心化的执行方式。例如:在训练期间利用共享的局部信息更新智能体的策略,然而每个智能体的策略只利用局部的信息选择动作,该类方法组合了中心化训练与去中心化执行的优势

4.1 Example——AC

多智能体actor-critic算法:在训练期间中心化的critic利用联合观测历史训练策略能够提供更加准确的状态评估,在执行期间,利用局部的观测历史,价值函数不再需要,由策略决定采取哪个动作

5、总结

本文总结了MARL算法当中的三个基本框架:中心化训练与执行、去中心化训练与执行、中心化训练分散执行

这篇关于08MARL深度强化学习——模型种类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717299

相关文章

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达