linux kernel态下使用NEON对算法进行加速

2024-02-17 07:48

本文主要是介绍linux kernel态下使用NEON对算法进行加速,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://www.cnblogs.com/liuwanpeng/p/7833000.html

ARM处理器从cortex系列开始集成NEON处理单元,该单元可以简单理解为协处理器,专门为矩阵运算等算法设计,特别适用于图像、视频、音频处理等场景,应用也很广泛。

  本文先对NEON处理单元进行简要介绍,然后介绍如何在内核态下使用NEON,最后列举实例说明。

    一.NEON简介

  其实最好的资料就是官方文档,Cortex-A Series Programmer’s Guide ,以下描述摘自该文档

     1.1 SIMD

  NEON采用SIMD架构,single instruction multy data,一条指令处理多个数据,NEON中这多个数据可以很多,而且配置灵活(8bit、16bit、32bit为单位,可多个单位数据),这是优势所在。

  如下图,APU需要至少四条指令完成加操作,而NEON只需要1条,考虑到ld和st,节省的指令更多。

 

  上述特性,使NEON特别适合处理块数据、图像、视频、音频等

     1.2 NEON architecture overview

  NEON也是load/store架构,寄存器为64bit/128bit,可形成向量化数据,配合若干便于向量操作的指令。

       1.2.1 commonality with VFP 

       1.2.2 data type

  

    指令中的数据类型表示,例如VMLAL.S8:

  

  1.2.3 registers 

  32个64bit寄存器,D0~D31;同时可组成16个128 bit寄存器,Q0~Q15。与VFP公用。

  

  寄存器内部的数据单位为8bit、16bit、32bit,可以根据需要灵活配置。

  

  

  NEON的指令有Normal,Long,Wide,Narrow和Saturating variants等几种后缀,是根据操作的源src和dst寄存器的类型确定的。

  

   

        1.2.4 instruction set

  

                     

   1.3 NEON 指令分类概述

    指令比较多, 详细可参考Cortex-A Series Programmer’s Guide。可大体分为:

  • NEON general data processing instructions  
  • NEON shift instructions 
  • NEON logical and compare operations 
  • NEON arithmetic instructions
  • NEON multiply instructions 
  • NEON load and store element and structure instructions B.8 NEON and VFP pseudo-instructions

  简单罗列一下各指令

  

                

                  

                

    

    无循环左移,负数左移按右移处理。

    load和store指令不太好理解,说明一下。

    

 

      1.4 NEON 使用方式

      1.4.1 NEON使用方式

  NEON有若干种使用方式:

  •   C语言被编译器自动向量化,需要增加编译选项,且C语言编码时有若干注意事项。这种方式不确定性太大,没啥实用价值
  •   NEON汇编,可行,汇编稍微复杂一点,但是核心算法还是值得的
  •   intrinsics,gcc和armcc等编译器提供了若干与NEON对应的inline函数,可直接在C语言里调用,这些函数反汇编时会直接编程响应的NEON指令。这种方式比较实用与C语言环境,且相对简单。本文后续使用这种方式进行详细说明。

         1.4.2  C语言NEON数据类型

    需包含arm_neon.h头文件,该头文件在gcc目录里。都是向量数据。

复制代码
typedef __builtin_neon_qi int8x8_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_hi int16x4_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_si int32x2_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_di int64x1_t;
typedef __builtin_neon_sf float32x2_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_poly8 poly8x8_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_poly16 poly16x4_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_uqi uint8x8_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_uhi uint16x4_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_usi uint32x2_t    __attribute__ ((__vector_size__ (8)));
typedef __builtin_neon_udi uint64x1_t;
typedef __builtin_neon_qi int8x16_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_hi int16x8_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_si int32x4_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_di int64x2_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_sf float32x4_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_poly8 poly8x16_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_poly16 poly16x8_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_uqi uint8x16_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_uhi uint16x8_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_usi uint32x4_t    __attribute__ ((__vector_size__ (16)));
typedef __builtin_neon_udi uint64x2_t    __attribute__ ((__vector_size__ (16)));typedef float float32_t;
typedef __builtin_neon_poly8 poly8_t;
typedef __builtin_neon_poly16 poly16_t;typedef struct int8x8x2_t
{int8x8_t val[2];
} int8x8x2_t;typedef struct int8x16x2_t
{int8x16_t val[2];
} int8x16x2_t;typedef struct int16x4x2_t
{int16x4_t val[2];
} int16x4x2_t;typedef struct int16x8x2_t
{int16x8_t val[2];
} int16x8x2_t;typedef struct int32x2x2_t
{int32x2_t val[2];
} int32x2x2_t;typedef struct int32x4x2_t
{int32x4_t val[2];
} int32x4x2_t;typedef struct int64x1x2_t
{int64x1_t val[2];
} int64x1x2_t;typedef struct int64x2x2_t
{int64x2_t val[2];
} int64x2x2_t;typedef struct uint8x8x2_t
{uint8x8_t val[2];
} uint8x8x2_t;typedef struct uint8x16x2_t
{uint8x16_t val[2];
} uint8x16x2_t;typedef struct uint16x4x2_t
{uint16x4_t val[2];
} uint16x4x2_t;typedef struct uint16x8x2_t
{uint16x8_t val[2];
} uint16x8x2_t;typedef struct uint32x2x2_t
{uint32x2_t val[2];
} uint32x2x2_t;typedef struct uint32x4x2_t
{uint32x4_t val[2];
} uint32x4x2_t;typedef struct uint64x1x2_t
{uint64x1_t val[2];
} uint64x1x2_t;typedef struct uint64x2x2_t
{uint64x2_t val[2];
} uint64x2x2_t;typedef struct float32x2x2_t
{float32x2_t val[2];
} float32x2x2_t;typedef struct float32x4x2_t
{float32x4_t val[2];
} float32x4x2_t;typedef struct poly8x8x2_t
{poly8x8_t val[2];
} poly8x8x2_t;typedef struct poly8x16x2_t
{poly8x16_t val[2];
} poly8x16x2_t;typedef struct poly16x4x2_t
{poly16x4_t val[2];
} poly16x4x2_t;typedef struct poly16x8x2_t
{poly16x8_t val[2];
} poly16x8x2_t;typedef struct int8x8x3_t
{int8x8_t val[3];
} int8x8x3_t;typedef struct int8x16x3_t
{int8x16_t val[3];
} int8x16x3_t;typedef struct int16x4x3_t
{int16x4_t val[3];
} int16x4x3_t;typedef struct int16x8x3_t
{int16x8_t val[3];
} int16x8x3_t;typedef struct int32x2x3_t
{int32x2_t val[3];
} int32x2x3_t;typedef struct int32x4x3_t
{int32x4_t val[3];
} int32x4x3_t;typedef struct int64x1x3_t
{int64x1_t val[3];
} int64x1x3_t;typedef struct int64x2x3_t
{int64x2_t val[3];
} int64x2x3_t;typedef struct uint8x8x3_t
{uint8x8_t val[3];
} uint8x8x3_t;typedef struct uint8x16x3_t
{uint8x16_t val[3];
} uint8x16x3_t;typedef struct uint16x4x3_t
{uint16x4_t val[3];
} uint16x4x3_t;typedef struct uint16x8x3_t
{uint16x8_t val[3];
} uint16x8x3_t;typedef struct uint32x2x3_t
{uint32x2_t val[3];
} uint32x2x3_t;typedef struct uint32x4x3_t
{uint32x4_t val[3];
} uint32x4x3_t;typedef struct uint64x1x3_t
{uint64x1_t val[3];
} uint64x1x3_t;typedef struct uint64x2x3_t
{uint64x2_t val[3];
} uint64x2x3_t;typedef struct float32x2x3_t
{float32x2_t val[3];
} float32x2x3_t;typedef struct float32x4x3_t
{float32x4_t val[3];
} float32x4x3_t;typedef struct poly8x8x3_t
{poly8x8_t val[3];
} poly8x8x3_t;typedef struct poly8x16x3_t
{poly8x16_t val[3];
} poly8x16x3_t;typedef struct poly16x4x3_t
{poly16x4_t val[3];
} poly16x4x3_t;typedef struct poly16x8x3_t
{poly16x8_t val[3];
} poly16x8x3_t;typedef struct int8x8x4_t
{int8x8_t val[4];
} int8x8x4_t;typedef struct int8x16x4_t
{int8x16_t val[4];
} int8x16x4_t;typedef struct int16x4x4_t
{int16x4_t val[4];
} int16x4x4_t;typedef struct int16x8x4_t
{int16x8_t val[4];
} int16x8x4_t;typedef struct int32x2x4_t
{int32x2_t val[4];
} int32x2x4_t;typedef struct int32x4x4_t
{int32x4_t val[4];
} int32x4x4_t;typedef struct int64x1x4_t
{int64x1_t val[4];
} int64x1x4_t;typedef struct int64x2x4_t
{int64x2_t val[4];
} int64x2x4_t;typedef struct uint8x8x4_t
{uint8x8_t val[4];
} uint8x8x4_t;typedef struct uint8x16x4_t
{uint8x16_t val[4];
} uint8x16x4_t;typedef struct uint16x4x4_t
{uint16x4_t val[4];
} uint16x4x4_t;typedef struct uint16x8x4_t
{uint16x8_t val[4];
} uint16x8x4_t;typedef struct uint32x2x4_t
{uint32x2_t val[4];
} uint32x2x4_t;typedef struct uint32x4x4_t
{uint32x4_t val[4];
} uint32x4x4_t;typedef struct uint64x1x4_t
{uint64x1_t val[4];
} uint64x1x4_t;typedef struct uint64x2x4_t
{uint64x2_t val[4];
} uint64x2x4_t;typedef struct float32x2x4_t
{float32x2_t val[4];
} float32x2x4_t;typedef struct float32x4x4_t
{float32x4_t val[4];
} float32x4x4_t;typedef struct poly8x8x4_t
{poly8x8_t val[4];
} poly8x8x4_t;typedef struct poly8x16x4_t
{poly8x16_t val[4];
} poly8x16x4_t;typedef struct poly16x4x4_t
{poly16x4_t val[4];
} poly16x4x4_t;typedef struct poly16x8x4_t
{poly16x8_t val[4];
} poly16x8x4_t;
复制代码

 

    1.4.3  gcc的NEON函数

  跟NEON指令对应,详见gcc手册。

 

    二.内核状态下使用NEON的规则

  在linux里,应用态可以比较方便使用NEON instrinsic,增加头arm_neon.h头文件后直接使用。但是内核态下使用NEON有较多限制,在linux内核文档  /Documentation/arm/kernel_mode_neon.txt对此有详细说明。要点为:

  

   还有一点特别关键:

  

复制代码
  CC [M]  /work/platform-zynq/drivers/zynq_fpga_driver/mmi_neon/lcd_hw_fs8812_neon.o
In file included from /home/liuwanpeng/lin/lib/gcc/arm-xilinx-linux-gnueabi/4.8.3/include/arm_neon.h:39:0,from /work/platform-zynq/drivers/zynq_fpga_driver/mmi_neon/lcd_hw_fs8812_neon.c:8:
/home/liuwanpeng/lin/lib/gcc/arm-xilinx-linux-gnueabi/4.8.3/include/stdint.h:9:26: error: no include path in which to search for stdint.h# include_next <stdint.h>没有使用-ffreestanding编译选项时,在内核态下使用出现此编译错误。                         
复制代码

    三.实例

  NEON一般在图像等领域,最小处理单位就是8bit,而不是1bit,这方便的例子非常多,本文就不说明了。在实际项目中,我需要对液晶的一组数据按位操作,变换,形成新的数据,如果用传统ARM指令,掩码、移位、循环,想想效率就非常低。于是决定使用NEON的位相关指令完成上述任务。

 3.1 任务说明

  如下图,需要对各个bit进行转换,组成新的数据。

 

   3.2 算法说明

 使用vmsk、vshl、vadd等位操作完成。

   3.3 kernel配置

  必须配置内核支持NEON,否则kernel_neon_begin()和kernel_neon_end()等函数不会编辑进去。

  make menuconfig:Floating point emulation,如下图。

  

未使能“Support for NEON in kernel mode”时会报错:
mmi_module_amp: Unknown symbol kernel_neon_begin (err 0)
mmi_module_amp: Unknown symbol kernel_neon_end (err 0)

   3.4 模块代码

 由于NEON代码需要单独设置编译选项,所以单独建立了一个内核模块,makefile如下:

CFLAGS_MODULE += -O3 -mfpu=neon -mfloat-abi=softfp -ffreestanding 

 

 核心代码:

复制代码

#include <linux/module.h> 
#include <linux/printk.h>
#include <arm_neon.h>  // 来自GCC的头文件,必须用-ffreestanding编译选徐昂

  #define LCD_8812_ROW_BYTES 16
  #define LCD_8812_PAGE_ROWS 8
  #define LCD_PAGE_BYTES (LCD_8812_ROW_BYTES*LCD_8812_PAGE_ROWS)

int fs8812_cvt_buf( uint8 * dst, uint8 * src )
{uint8x16_t V_src[8];uint8x16_t V_tmp[8];uint8x16_t V_dst[8];uint8x16_t V_msk;int8x16_t V_shift;int8 RSHL_bits[8] = {0,1,2,3,4,5,6,7};int8 row,bit;uint8 page;uint8 * fb_page_x = NULL;    // convert the frame_buf for fs8812for( page=0;page<4;page++ ){fb_page_x = src + page*LCD_PAGE_BYTES;for( row=0;row<LCD_8812_PAGE_ROWS;row++ )V_src[row] = vld1q_u8( fb_page_x + row*LCD_8812_ROW_BYTES );for( bit=0;bit<8;bit++){V_msk = vdupq_n_u8(1<<bit);for( row=0;row<LCD_8812_PAGE_ROWS;row++){V_tmp[row] = vandq_u8(V_src[row],V_msk);    // only process the desire bitV_shift = vdupq_n_s8( RSHL_bits[row]-bit );V_tmp[row] = vshlq_u8( V_tmp[row],V_shift );}    V_dst[bit]  =  vorrq_u8(V_tmp[0],V_tmp[1]);     // all bit_x convert to one rowV_dst[bit] |=  vorrq_u8(V_tmp[2],V_tmp[3]);V_dst[bit] |=  vorrq_u8(V_tmp[4],V_tmp[5]);V_dst[bit] |=  vorrq_u8(V_tmp[6],V_tmp[7]);               }// store to ramfb_page_x = dst + page*LCD_PAGE_BYTES;for( row=0;row<LCD_8812_PAGE_ROWS;row++ ){vst1q_u8(fb_page_x,V_dst[row]);fb_page_x += LCD_8812_ROW_BYTES;}}return 0;
}EXPORT_SYMBOL_GPL(fs8812_cvt_buf);
复制代码

 

 调用模块,务必没有“-mfpu=neon -mfloat-abi=softfp ”选项

    // convert the frame_buf for fs8812kernel_neon_begin();fs8812_cvt_buf( g_tmp_buf, frame_buf );kernel_neon_end();


这篇关于linux kernel态下使用NEON对算法进行加速的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717129

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

SQL Server 中的表进行行转列场景示例

《SQLServer中的表进行行转列场景示例》本文详细介绍了SQLServer行转列(Pivot)的三种常用写法,包括固定列名、条件聚合和动态列名,文章还提供了实际示例、动态列数处理、性能优化建议... 目录一、常见场景示例二、写法 1:PIVOT(固定列名)三、写法 2:条件聚合(CASE WHEN)四、

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req