C++类和对象-多态->案例1计算器类、案例2制作饮品、案例3电脑组装需求分析和电脑组装具体实现

本文主要是介绍C++类和对象-多态->案例1计算器类、案例2制作饮品、案例3电脑组装需求分析和电脑组装具体实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include<iostream>
using namespace std;
#include<string>

//分别利用普通写法和多态技术实现计算器

//普通写法
class Calculator {
public:
    int getResult(string oper)
    {
        if (oper == "+") {
            return m_Num1 + m_Num2;
        }
        else if (oper == "-") {
            return m_Num1 - m_Num2;
        }
        else if (oper == "*") {
            return m_Num1 * m_Num2;
        }
        //如果想扩展新的功能,需要修改源码
        //在真实开发中  提供  开闭原则
        //开闭原则:对扩展进行开发,对修改进行关闭
    }
public:
    int m_Num1;//操作数1
    int m_Num2;//操作数2
};

void test01()
{
    //普通实现测试
    //创建计算器对象
    Calculator c;
    c.m_Num1 = 10;
    c.m_Num2 = 10;
    cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;

    cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;

    cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}

//利用多态实现计算器
//实现计算器抽象类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{
public :

    virtual int getResult()
    {
        return 0;
    }

    int m_Num1;
    int m_Num2;
};

//加法计算器
class AddCalculator :public AbstractCalculator
{
public:
    int getResult()
    {
        return m_Num1 + m_Num2;
    }
};

//减法计算器
class SubCalculator :public AbstractCalculator
{
public:
    int getResult()
    {
        return m_Num1 - m_Num2;
    }
};

//乘法计算器
class MulCalculator :public AbstractCalculator
{
public:
    int getResult()
    {
        return m_Num1 * m_Num2;
    }
};


void test02()
{
    //多态使用条件
    //父类指针或者引用指向子类对象

    //创建加法计算器
    AbstractCalculator * abc = new AddCalculator;
    abc->m_Num1 = 10;
    abc->m_Num2 = 10;
    cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
    delete abc;  //用完了记得销毁

    //创建减法计算器
    abc = new SubCalculator;
    abc->m_Num1 = 10;
    abc->m_Num2 = 10;
    cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
    delete abc;  

    //创建乘法计算器
    abc = new MulCalculator;
    abc->m_Num1 = 10;
    abc->m_Num2 = 10;
    cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
    delete abc;
}

int main() {

    //test01();

    test02();

    system("pause");

    return 0;
}

总结:C++开发提倡利用多态设计程序架构,因为多态优点很多

#include<iostream>
using namespace std;


//抽象制作饮品
class AbstractDrinking
{
public:
    //烧水
    virtual void Boil() = 0;
    //冲泡
    virtual void Brew() = 0;
    //倒入杯中
    virtual void PourInCup() = 0;
    //加入辅料
    virtual void PutSomething() = 0;
    //规定流程
    void MakeDrink()
    {
        Boil();
        Brew();
        PourInCup();
        PutSomething();
    }
};

//制作咖啡
class Coffee : public AbstractDrinking
{
public:
    //烧水
    virtual void Boil()
    {
        cout << "煮农夫山泉!" << endl;
    }
    //冲泡
    virtual void Brew()
    {
        cout << "冲泡咖啡!" << endl;
    }
    //倒入杯中
    virtual void PourInCup()
    {
        cout << "将咖啡倒入杯中!" << endl;
    }
    //加入辅料
    virtual void PutSomething()
    {
        cout << "加入牛奶!" << endl;
    }
};

//制作茶水
class Tea : public AbstractDrinking
{
public:
    //烧水
    virtual void Boil()
    {
        cout << "煮自来水!" << endl;
    }
    //冲泡
    virtual void Brew()
    {
        cout << "冲泡茶叶!" << endl;
    }
    //倒入杯中
    virtual void PourInCup()
    {
        cout << "将茶水倒入杯中!" << endl;
    }
    //加入辅料
    virtual void PutSomething()
    {
        cout << "加入枸杞!" << endl;
    }
};

//制作函数
void DoWork(AbstractDrinking * drink)
{
    drink->MakeDrink();
    delete drink;
}

void test01()
{
    //制作咖啡
    DoWork(new Coffee);
    cout << "--------------" << endl;
    //制作茶叶
    DoWork(new Tea);
}


int main()
{

    test01();

    system("pause");

    return 0;
}

#include<iostream>
using namespace std;

//抽象不同零件类
//抽象CPU类
class CPU
{
public:
    //抽象的计算函数
    virtual void calculate() = 0;
};

//抽象显卡类
class VideoCard
{
public:
    //抽象的显示函数
    virtual void display() = 0;
};

//抽象内存条类
class Memory
{
public:
    //抽象的存储函数
    virtual void storage() = 0;
};

//电脑类
class Computer
{
public:
    Computer(CPU * cpu, VideoCard * vc, Memory * mem)
    {
        m_cpu = cpu;
        m_vc = vc;
        m_mem = mem;
    }

    //提供工作的函数
    void work()
    {
        //让零件工作起来,调用接口
        m_cpu->calculate();

        m_vc->display();

        m_mem->storage();
    }

    //提供析构函数 释放3个电脑零件
    ~Computer()
    {

        //释放CPU零件
        if (m_cpu != NULL)
        {
            delete m_cpu;
            m_cpu = NULL;
        }

        //释放显卡零件
        if (m_vc != NULL)
        {
            delete m_vc;
            m_vc = NULL;
        }

        //释放内存条零件
        if (m_mem != NULL)
        {
            delete m_mem;
            m_mem = NULL;
        }
    }

private:

    CPU * m_cpu;      //CPU的零件指针
    VideoCard * m_vc; //显卡零件指针
    Memory * m_mem;   //内存条零件指针
};

//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
    virtual void calculate()
    {
        cout << "Intel的CPU开始计算了!" << endl;
    }
};

class IntelVideoCard :public VideoCard
{
public:
    virtual void display()
    {
        cout << "Intel的显卡开始显示了!" << endl;
    }
};

class IntelMemory :public Memory
{
public:
    virtual void storage()
    {
        cout << "Intel的内存条开始存储了!" << endl;
    }
};

//Lenovo厂商
class LenovoCPU :public CPU
{
public:
    virtual void calculate()
    {
        cout << "Lenovo的CPU开始计算了!" << endl;
    }
};

class LenovoVideoCard :public VideoCard
{
public:
    virtual void display()
    {
        cout << "Lenovo的显卡开始显示了!" << endl;
    }
};

class LenovoMemory :public Memory
{
public:
    virtual void storage()
    {
        cout << "Lenovo的内存条开始存储了!" << endl;
    }
};


void test01()
{
    //第一台电脑零件
    CPU * intelCpu = new IntelCPU;
    VideoCard * intelCard = new IntelVideoCard;
    Memory * intelMem = new IntelMemory;

    cout << "第一台电脑开始工作:" << endl;
    //创建第一台电脑
    Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
    computer1->work();
    delete computer1;

    cout << "-----------------------" << endl;
    cout << "第二台电脑开始工作:" << endl;
    //第二台电脑组装
    Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);
    computer2->work();
    delete computer2;

    cout << "-----------------------" << endl;
    cout << "第三台电脑开始工作:" << endl;
    //第三台电脑组装
    Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);
    computer3->work();
    delete computer3;

}

int main()
{

    test01();

    system("pause");
    return 0;
}

这篇关于C++类和对象-多态->案例1计算器类、案例2制作饮品、案例3电脑组装需求分析和电脑组装具体实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714798

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符