数据密集型应用系统设计

2024-02-16 06:04

本文主要是介绍数据密集型应用系统设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据密集型应用系统设计

原文完整版PDF:https://pan.quark.cn/s/d5a34151fee9

这本书的作者是少有的从工业界干到学术界的牛人,知识面广得惊人,也善于举一反三,知识之间互相关联,比如有个地方把读路径比作programming language的lazy evaluation而写路径比作eager evaluation,令人拍案。这一本数囊括了几乎所有数据处理相关工作中可能遇到了的内容,而且也有非常棒的实操经验。比如书的一开始,作者反复强调监控中分位数的作用,可以揭示一些被平均数掩盖的事实,我也正好有一个监控从都是监控平均值变成主要监控若干p99分位数的经历,看到这里,不由得掩卷叹息。

我做数据处理也就是不到三年,接触过不少相关的工具,可以说Hadoop啊,pig啊,Hive啊,Storm啊,你的确不去了解它们背后的原理理念也可以用,但是真正要整合它们,做一个容错,可扩展,可维护的数据产品,则需要相当的分布式和数据系统的insight。帮助你建立这样的insight的书,应该是比较缺乏的,你可以去刷分布式系统的课程,看paper,但是阅读一本one in all的书,ROI可能是最高的。之前也有人尝试过,比如有国人写的《大数据日知录》,其实写得也算不错,但是不知道是笔力不济还是什么缘故,最后也是沦为技术文档的罗列。

这本书循循善诱的写作手法应该是相当高超了,讲解得非常深入浅出,一般照着提出问题 -> 解决方案 -> 这个方案的长处短处 -> 发散到其它方案这个模式讲解,看起来可以说是不知不觉,非常轻松,也没有有些作者的拽文习惯,几乎全部是中学词汇,句子也不复杂,保证非英语母语的人可以流畅阅读,这点可以说是非常良心了。

当然,这本书没有介绍什么新技术,很多内容都是我们所熟悉的。也没有具体讲解某一种技术的细节,不能期望读完本书后成为某种专家。

本书的意义在于,一方面是百科全书式的广度科普,涉及大家耳熟能详的技术名词:NoSQL, 大数据,最终一致性,CAP,MapReduce,流处理等,讨论他们背后遵循的不变的原则,知晓这些技术做的取舍,探索它们的设计选择。帮助我们更好地使用这些技术,不仅知道how,更加知道why。对我们有经验的工程师来说,可以查漏补缺,完善知识图谱上的拼图。

另一方面是思想深度上的升华。我们虽然有一定的开发经验,掌握了一些知识和技巧,但这些知识在我们的头脑中是比较散乱的,没有很好的组织起来,点和点之间也没产生联系。这本书就是将各个知识点串联起来,我们可以看到,同一种思想在多个章节中出现,反映出这些各种技术本质上是某种思想在不同问题层面上的投射。让我们能够站在一个高度上审视,自己的工作本质上是在做什么事,是在何种假设下解决什么类型的问题,得以从繁多的技术细节中抬起头来,看一看知识体系的全貌。

这本书还有一个优点,把复杂的东西简单化,之前总也搞不明白的概念,看了这本书就懂了。

书的最后一章升华了整本书。Martin Kleppmann 不仅是个牛逼的程序员,更是一个极富社会责任和人文关怀的牛逼程序员。而这是更难能可贵的。

习武之人讲究“习武先修德”。Martin Kleppmann 亦是如此。他用前十一章教会我们如何处理海量数据,用最后一章告诉我们如何正确使用数据。要保护用户隐私、要对自己的算法负责、要保障弱势群体的权利……他旗帜鲜明地说道:“盲目相信数据决策至高无上,这不仅仅是一种妄想,而是有切实危险的。”

原文很长,完整版PDF已整理好了(在文章开头),感兴趣的小伙伴可以去看看。

这篇关于数据密集型应用系统设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713691

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方