SelfAttention|自注意力机制ms简单实现

2024-02-15 20:20

本文主要是介绍SelfAttention|自注意力机制ms简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自注意力机制学习有感

  • 观看b站博主的讲解视频以及跟着他的pytorch代码实现mindspore的自注意力机制:
  • up主讲的很好,推荐入门自注意力机制。
import mindspore as ms
import mindspore.nn as nn
from mindspore import Parameter
from mindspore import context
context.set_context(device_target='Ascend',max_device_memory='1GB') class SelfAttention(nn.Cell):def __init__(self, dim):super(SelfAttention, self).__init__()wq_data = [[1.0, 0], [1., 1.]] # wq权重初始化 超参数wk_data = [[0., 1.], [1., 1.]] # wk权重初始化 超参数wv_data = [[0., 1., 1.], [1., 0., 0.]] # wv权重初始化 超参数self.q = nn.Dense(in_channels=dim, out_channels=2, has_bias=False)self.q.weight.set_data(ms.Tensor(wq_data).T)print("wq value:", self.q.weight.value())self.k = nn.Dense(in_channels = dim, out_channels=2, has_bias=False)self.k.weight.set_data(ms.Tensor(wk_data).T)print('wk value:', self.k.weight.value())self.v = nn.Dense(in_channels=dim, out_channels=3, has_bias=False)# print(self.v.weight.shape)self.v.weight.set_data(ms.Tensor(wv_data).T)print('wv value:',self.v.weight.value())print("*********************" * 2)def construct(self, x):q = self.q(x)print('q value:', q)k = self.k(x)print('k value:', k)v = self.v(x)# xx = x.matmul(ms.Tensor([[0., 1., 1.], [1., 0., 0.]]))print('v value:', v, '\n')print('#################################')x = (q @ k.T)/ms.ops.sqrt(ms.tensor(2.))x = ms.ops.softmax(x) @ vprint("result:", x)x = [[1., 1.],[1,0],[2,1],[0, 2.]]
x = ms.Tensor(x)
attn = SelfAttention(2)
attn(x)

结果如下:

wq value: [[1. 1.][0. 1.]]
wk value: [[0. 1.][1. 1.]]
wv value: [[0. 1.][1. 0.][1. 0.]]
******************************************
q value: [[2. 1.][1. 0.][3. 1.][2. 2.]]
k value: [[1. 2.][0. 1.][1. 3.][2. 2.]]
v value: [[1. 1. 1.][0. 1. 1.][1. 2. 2.][2. 0. 0.]] #################################
result: [[1.5499581  0.71284014 0.71284014][1.3395231  0.7726004  0.7726004 ][1.7247156  0.4475609  0.4475609 ][1.4366053  1.         1.        ]]

** 吐槽mindspore说明文档,对ms.nn.Dense的说明太过简单了,有对新手真不友好(对我) **

  • pytorch的文档:
    在这里插入图片描述
  • mindspore的文档:
    在这里插入图片描述
    pytorch有公式,至少提示A的转置有提示。mindspore没有,导致我这步实现的时候输出的结果不对,还是希望mindspore说明问昂也把公式写清楚点。其实mindspore的Dense和pytorch的Linear的公式实现是一样的。
    附上pytorch的实现:
#@title Default title text 
import torch
import torch_npu
import torch.nn as nn
class Self_Attention(torch.nn.Module):def __init__(self, dim):super(Self_Attention, self).__init__() #  其中qkv代表构建好训练好的wq,wk,wv的权重参数;self.scale = 2 ** -0.5self.q = torch.nn.Linear(dim, 2, bias=False) q_list = [[1., 0.],[1., 1.]]self.q.weight.data = torch.Tensor(q_list).Tprint('q value:', self.q.weight.data)self.k = nn.Linear(dim, 2, bias=False)k_list = [[0., 1.], [1., 1.]]self.k.weight.data = torch.Tensor(k_list).Tprint('k value:', self.k.weight.data)self.v = nn.Linear(dim,3,bias=False)v_list = [[0., 1., 1.],[1., 0., 0.]]# print("origin shape:", self.v.weight.data.shape)self.v.weight.data = torch.Tensor(v_list).Tprint('init shape:',self.v.weight.data)def forward(self, x):q = self.q(x)  # 通过训练好的参数生成q参数print("q:", q)k = self.k(x)print("k:", k)v = self.v(x)print("v shape:", v.shape)# Att公式attn = (q.matmul(k.T)) / torch.sqrt(torch.tensor(2.0))print("attn1:", attn)# attn = (q @ k.transpose(-2, -1)) / torch.sqrt(torch.tensor(2.0))# print("attn11:", attn)# attn = (q @ k.transpose(-2, -1)) * self.scale# print("attn2:", attn)attn = attn.softmax(dim=-1)print("softmax attn:", attn)# print(attn.shape) # shape[4,4]x = attn @ vprint(x.shape)  #shape[4,3]return x 
x = [[1., 1.],[1,0],[2,1],[0, 2.]]
x = torch.Tensor(x)
att = Self_Attention(2)  
att(x)

这篇关于SelfAttention|自注意力机制ms简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712440

相关文章

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、