代码随想录算法训练营29期|day51 任务以及具体安排

2024-02-15 14:12

本文主要是介绍代码随想录算法训练营29期|day51 任务以及具体安排,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第九章 动态规划part08

  •  139.单词拆分 
    class Solution {public boolean wordBreak(String s, List<String> wordDict) {HashSet<String> set = new HashSet<>(wordDict);boolean[] valid = new boolean[s.length() + 1];valid[0] = true;for (int i = 1; i <= s.length(); i++) {for (int j = 0; j < i && !valid[i]; j++) {if (set.contains(s.substring(j, i)) && valid[j]) {valid[i] = true;}}}return valid[s.length()];}
    }

    思路:该题类似于背包问题,字符串s为背包,List集合为物品,首先确定dp数组为boolean,确定递推公式:如果从j到i可以由wordDict组成且前面的dp数组为true,那么i的dp数组赋值为true。

  • 动态规划:关于多重背包,你该了解这些!

    本题力扣上没有原题,大家可以去卡码网第56题 (opens new window)去练习,题意是一样的。

    之前我们已经系统的讲解了01背包和完全背包,如果没有看过的录友,建议先把如下三篇文章仔细阅读一波。

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
  • 动态规划:关于完全背包,你该了解这些!(opens new window)
  • 这次我们再来说一说多重背包

    #多重背包

    对于多重背包,我在力扣上还没发现对应的题目,所以这里就做一下简单介绍,大家大概了解一下。

    有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

    多重背包和01背包是非常像的, 为什么和01背包像呢?

    每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

    例如:

    背包最大重量为10。

    物品为:

    重量价值数量
    物品01152
    物品13203
    物品24302

    问背包能背的物品最大价值是多少?

    和如下情况有区别么?

    重量价值数量
    物品01151
    物品01151
    物品13201
    物品13201
    物品13201
    物品24301
    物品24301

    毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

    练习题目:卡码网第56题,多重背包

  •  

    听说背包问题很难? 这篇总结篇来拯救你了

    年前我们已经把背包问题都讲完了,那么现在我们要对背包问题进行总结一番。

    背包问题是动态规划里的非常重要的一部分,所以我把背包问题单独总结一下,等动态规划专题更新完之后,我们还会在整体总结一波动态规划。

    关于这几种常见的背包,其关系如下:

    416.分割等和子集1

    通过这个图,可以很清晰分清这几种常见背包之间的关系。

    在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组
  • 其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面我从这两点来对背包问题做一做总结

    #背包递推公式

    问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)
  • 问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
  • 问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)
  • 问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数(opens new window)
  • #遍历顺序

    #01背包

    在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

    和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

    一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

    #完全背包

    说完01背包,再看看完全背包。

    在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

    但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

    相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II(opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
  • 如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

  • 求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)
  • 对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

    #总结

    这篇背包问题总结篇是对背包问题的高度概括,讲最关键的两部:递推公式和遍历顺序,结合力扣上的题目全都抽象出来了

    而且每一个点,我都给出了对应的力扣题目

    最后如果你想了解多重背包,可以看这篇动态规划:关于多重背包,你该了解这些! (opens new window),力扣上还没有多重背包的题目,也不是面试考察的重点。

    如果把我本篇总结出来的内容都掌握的话,可以说对背包问题理解的就很深刻了,用来对付面试中的背包问题绰绰有余!

    背包问题总结:

这篇关于代码随想录算法训练营29期|day51 任务以及具体安排的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711608

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引