[BIZ] - 1.金融交易系统数据特点

2024-02-15 13:36

本文主要是介绍[BIZ] - 1.金融交易系统数据特点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 典型数据汇总

数据

说明

新增数据量(条/天)

Qps(条/s)

消息大小(Byte)

实时性

可丢失性

可恢复性

实时行情

1.使用场景:交易,报价,策略验证;

2.冷热分离:彭博行情/其他行情;黄金&期货行情/固守行情

5亿

3万

1.5K

< 5ms

< 5%

N

风控数据

容易造成BigKey问题

数据事后风控

500万

3万

50K

分钟级别

可丢失

N

监控数据

数据种类:

1.中间件监控

2.应用监控

10亿

5万

215

亚分钟级别

可丢失

N

excel报价数据

做市报价

3亿

2万

3M

压秒

可丢失

N

订单数据

含做市

1千万

1万

1.5K

< 3ms

不可丢失

Y

权限数据

权限控制粒度小

容易造成HotKey问题

1千万5万215< 1ms不可丢失Y

通过上表,我们可以知道,金融交易系统的数据具有以下特点:

1.1 数据量极大

交易系统的数据量特大,主要来自以下几种类型的数据。

1.1.1 行情

    行情是交易系统最为重要的数据,交易就是在不断变化的行情中寻找时机来实现盈利的。海量的行情主要分成两种,一种是tick数据(也叫逐笔行情),例如彭博行情数据,它会将每一笔交易的行情都发布出来,这种数据量巨大,一天就有4亿多条数据;另一种是每隔500ms发布一次行情,这种相对来说数据量少很多,一天大概1亿条左右。再加上各家公司会根据需求对行情进行进一步的加工,如聚合多种行情形成的聚合行情。数据量一天就会达到5亿多条。   

1.1.2 报价

    作为做市商,需要根据行情,通过一定的算法(如跟随当前行情报价、根据设定的差值及当前行情报价,根据行情计算曲线,然后报价)对外报价。报价数据一天的数据量能达到3亿条。

1.1.3 监控

    监控数据主要包括中间件的监控数据,服务实例的内存和CPU监控数据等,数据量和QPS非常高。一天的数据量能达到10亿条,在进行监控图标展示时,必须进行采样处理。

1.2 并发性极高

1.2.1 行情

    对于行情而言,QPS基本保持在3万/s以上,高峰时段(国内交易时间9:00 - 11:30左右,国外交易时间21:.00 - 23:00)的QPS能达到3万/s。

1.2.2 权限

    对于交易高峰时段(手动单,电子单,做市,量化),会造成权限数据的访问频繁达到5万/s。主要是读高峰,权限写操作比较少,而且一般在开始交易前就已经完成。

1.2.3 监控

    监控数据的峰值能达到5万/s,主要是写操作并发高。

1.2.4 风控

    风控数据分成两种,一种是partial batch,数据量少,时间间隔短,例如每10s计算一次;另一种是full batch,会根据当前行情全量计算一次所有产品的风控指标数据,例如每30min计算一次。由于full batch的计算量大,而且希望结果能够一次性给到交易员查看,议事交易员能够看到不同产品的统一切面数据,导致风控数据的瞬间并发值特别高,达到3万/s。

1.2.5 报价

    由于做市交易和量化交易的存在,导致报价数据量特别大,峰值能够达到2万/s。

1.2.6 订单

    交易方式的多样化,如手工单,电子单,做市交易以及量化交易,再加上订单策略,如冰山策略等,导致订单的并发量在高峰时可以达到1万/s。

1.3 延时要求极低

1.3.1 行情

1.3.1.1 实时行情

    实时行情分量两大类,一类是当前会进行交易的产品行情数据,另一类是计划以后会进行交易,当前只是用于策略测试的行情数据。

    对于会进行交易的产品行情数据,要求交易所或数据商的数据进入交易系统后,必须在3ms以内推送到各个下游服务。

    数据流的大致过程:

交易所 --> 行情接入服务(接入数据,加工数据) -> MQ(MQ间消息同步) -> 下游服务 

1.3.1.2 历史行情

行情,报价,交易,权限相关的延时必须极低;监控,

差异大

1.4 消息体大

差异也大

1.5 数据质量根据场景差异明显

例如行情,实时行情延时要求在3ms以内;对于历史行情,如果三年内的行情,延时可以在亚秒级别;对于五年内的行情,延时可以在分钟级别;五年以外的行情,可以存档。

对于订单数据,要求绝对不能丢失,延时在5ms以内。

权限数据,要求不能丢失,且延时在3ms以内。

这篇关于[BIZ] - 1.金融交易系统数据特点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711526

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分