[BIZ] - 1.金融交易系统数据特点

2024-02-15 13:36

本文主要是介绍[BIZ] - 1.金融交易系统数据特点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 典型数据汇总

数据

说明

新增数据量(条/天)

Qps(条/s)

消息大小(Byte)

实时性

可丢失性

可恢复性

实时行情

1.使用场景:交易,报价,策略验证;

2.冷热分离:彭博行情/其他行情;黄金&期货行情/固守行情

5亿

3万

1.5K

< 5ms

< 5%

N

风控数据

容易造成BigKey问题

数据事后风控

500万

3万

50K

分钟级别

可丢失

N

监控数据

数据种类:

1.中间件监控

2.应用监控

10亿

5万

215

亚分钟级别

可丢失

N

excel报价数据

做市报价

3亿

2万

3M

压秒

可丢失

N

订单数据

含做市

1千万

1万

1.5K

< 3ms

不可丢失

Y

权限数据

权限控制粒度小

容易造成HotKey问题

1千万5万215< 1ms不可丢失Y

通过上表,我们可以知道,金融交易系统的数据具有以下特点:

1.1 数据量极大

交易系统的数据量特大,主要来自以下几种类型的数据。

1.1.1 行情

    行情是交易系统最为重要的数据,交易就是在不断变化的行情中寻找时机来实现盈利的。海量的行情主要分成两种,一种是tick数据(也叫逐笔行情),例如彭博行情数据,它会将每一笔交易的行情都发布出来,这种数据量巨大,一天就有4亿多条数据;另一种是每隔500ms发布一次行情,这种相对来说数据量少很多,一天大概1亿条左右。再加上各家公司会根据需求对行情进行进一步的加工,如聚合多种行情形成的聚合行情。数据量一天就会达到5亿多条。   

1.1.2 报价

    作为做市商,需要根据行情,通过一定的算法(如跟随当前行情报价、根据设定的差值及当前行情报价,根据行情计算曲线,然后报价)对外报价。报价数据一天的数据量能达到3亿条。

1.1.3 监控

    监控数据主要包括中间件的监控数据,服务实例的内存和CPU监控数据等,数据量和QPS非常高。一天的数据量能达到10亿条,在进行监控图标展示时,必须进行采样处理。

1.2 并发性极高

1.2.1 行情

    对于行情而言,QPS基本保持在3万/s以上,高峰时段(国内交易时间9:00 - 11:30左右,国外交易时间21:.00 - 23:00)的QPS能达到3万/s。

1.2.2 权限

    对于交易高峰时段(手动单,电子单,做市,量化),会造成权限数据的访问频繁达到5万/s。主要是读高峰,权限写操作比较少,而且一般在开始交易前就已经完成。

1.2.3 监控

    监控数据的峰值能达到5万/s,主要是写操作并发高。

1.2.4 风控

    风控数据分成两种,一种是partial batch,数据量少,时间间隔短,例如每10s计算一次;另一种是full batch,会根据当前行情全量计算一次所有产品的风控指标数据,例如每30min计算一次。由于full batch的计算量大,而且希望结果能够一次性给到交易员查看,议事交易员能够看到不同产品的统一切面数据,导致风控数据的瞬间并发值特别高,达到3万/s。

1.2.5 报价

    由于做市交易和量化交易的存在,导致报价数据量特别大,峰值能够达到2万/s。

1.2.6 订单

    交易方式的多样化,如手工单,电子单,做市交易以及量化交易,再加上订单策略,如冰山策略等,导致订单的并发量在高峰时可以达到1万/s。

1.3 延时要求极低

1.3.1 行情

1.3.1.1 实时行情

    实时行情分量两大类,一类是当前会进行交易的产品行情数据,另一类是计划以后会进行交易,当前只是用于策略测试的行情数据。

    对于会进行交易的产品行情数据,要求交易所或数据商的数据进入交易系统后,必须在3ms以内推送到各个下游服务。

    数据流的大致过程:

交易所 --> 行情接入服务(接入数据,加工数据) -> MQ(MQ间消息同步) -> 下游服务 

1.3.1.2 历史行情

行情,报价,交易,权限相关的延时必须极低;监控,

差异大

1.4 消息体大

差异也大

1.5 数据质量根据场景差异明显

例如行情,实时行情延时要求在3ms以内;对于历史行情,如果三年内的行情,延时可以在亚秒级别;对于五年内的行情,延时可以在分钟级别;五年以外的行情,可以存档。

对于订单数据,要求绝对不能丢失,延时在5ms以内。

权限数据,要求不能丢失,且延时在3ms以内。

这篇关于[BIZ] - 1.金融交易系统数据特点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711526

相关文章

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=