OpenCV编程-OpenMP优化入门

2024-02-14 23:58

本文主要是介绍OpenCV编程-OpenMP优化入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

找了个去雾源码,做了简单的优化:


IplImage *quw1(IplImage *src,int block,double w)
{//图像分别有三个颜色通道IplImage *dst1=NULL;IplImage *dst2=NULL;IplImage *dst3=NULL;IplImage *imgroi1;//dst1的ROIIplImage *imgroi2;//dst2的ROIIplImage *imgroi3;//dst3的ROIIplImage *roidark;//dark channel的ROIIplImage *dark_channel=NULL;//暗原色先验的指针IplImage *toushelv=NULL;//透射率//去雾算法运算后的三个通道IplImage *j1=NULL;IplImage *j2=NULL;IplImage *j3=NULL;//去雾后的图像,三通道合并成IplImage *dst=NULL;//源图像ROI位置以及大小CvRect ROI_rect;//分离的三个通道dst1=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);dst2=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);dst3=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为各个ROI分配内存imgroi1=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);imgroi2=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);imgroi3=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);roidark=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);//为j1 j2 j3分配大小j1=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);j2=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);j3=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为暗原色先验指针分配大小dark_channel=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为透射率指针分配大小toushelv=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//dst分配大小dst=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,3);//将原彩色图像分离成三通道cvSplit(src,dst1,dst2,dst3,NULL);//求暗原色ROI_rect.width=block;ROI_rect.height=block;ROI_rect.x=0;ROI_rect.y=0;int i;int j;double min1=0;double max1=0;double min2=0;double max2=0;double min3=0;double max3=0;double min=0;CvScalar value;#pragma omp parallel forfor(i=0;i<src->width/block;i++){        for(j=0;j<src->height/block;j++){//分别计算三个通道内ROI的最小值cvSetImageROI(dst1,ROI_rect);cvCopy(dst1,imgroi1,NULL);cvMinMaxLoc(imgroi1,&min1,&max1,NULL,NULL);cvSetImageROI(dst2,ROI_rect);cvCopy(dst2,imgroi2,NULL);cvMinMaxLoc(imgroi2,&min2,&max2,NULL,NULL);cvSetImageROI(dst3,ROI_rect);cvCopy(dst3,imgroi3,NULL);cvMinMaxLoc(imgroi3,&min3,&max3,NULL,NULL);//求三个通道内最小值的最小值;if(min1<min2)min=min1;elsemin=min2;if(min>min3)min=min3;//min为这个ROI中暗原色value=cvScalar(min,min,min,min);//min放在value中;//min赋予dark_channel中相应的ROI;cvSetImageROI(dark_channel,ROI_rect);cvSet(roidark,value,NULL);cvCopy(roidark,dark_channel,NULL);//释放各个ROI;cvResetImageROI(dst1);cvResetImageROI(dst2);cvResetImageROI(dst3);cvResetImageROI(dark_channel);//转入下一个ROIROI_rect.x=block*i;ROI_rect.y=block*j;}}//保存暗原色先验的图像cvSaveImage("D:/dark_channel_prior.jpg",dark_channel);//利用得到的暗原色先验dark_channel_prior.jpg求大气光强double min_dark;double max_dark;CvPoint min_loc;CvPoint max_loc;//max_loc是暗原色先验最亮一小块的原坐标cvMinMaxLoc(dark_channel,&min_dark,&max_dark,&min_loc,&max_loc,NULL);//	cout<<max_loc.x<<" "<<max_loc.y<<endl;ROI_rect.x=max_loc.x;ROI_rect.y=max_loc.y;double A_dst1;//定义大气光成分的估计值double dst1_min;double A_dst2;double dst2_min;double A_dst3;double dst3_min;cvSetImageROI(dst1,ROI_rect);//按照论文方法求大气光强估计值cvCopy(dst1,imgroi1,NULL);cvMinMaxLoc(imgroi1,&dst1_min,&A_dst1,NULL,NULL);cvSetImageROI(dst2,ROI_rect);cvCopy(dst2,imgroi2,NULL);cvMinMaxLoc(imgroi2,&dst2_min,&A_dst2,NULL,NULL);cvSetImageROI(dst3,ROI_rect);cvCopy(dst3,imgroi3,NULL);cvMinMaxLoc(imgroi3,&dst3_min,&A_dst3,NULL,NULL);//	cout<<A_dst1<<" "<<A_dst2<<" "<<A_dst3<<endl;//这三值为大气光强度估计值//求透射率int k;int l;CvScalar m;CvScalar n;//暗原色先验各元素值
#pragma omp parallel forfor(k=0;k<src->height;k++){for(l=0;l<src->width;l++){m=cvGet2D(dark_channel,k,l);n=cvScalar(255-w*m.val[0]);//w目的是保留一部分的雾,使图像看起来真实些cvSet2D(toushelv,k,l,n);}}cvSaveImage("D:/toushelv.jpg",toushelv);//求无雾图像int p,q;double tx;double jj1,jj2,jj3;CvScalar ix,jx;
#pragma omp parallel forfor(p=0;p<src->height;p++){for(q=0;q<src->width;q++){tx=cvGetReal2D(toushelv,p,q);tx=tx/255;if(tx<0.1)tx=0.1;ix=cvGet2D(src,p,q);jj1=(ix.val[0]-A_dst1)/tx+A_dst1;//根据雾产生模型运算,还原出无雾图像jj2=(ix.val[1]-A_dst2)/tx+A_dst2;jj3=(ix.val[2]-A_dst3)/tx+A_dst3;jx=cvScalar(jj1,jj2,jj3,0.0);cvSet2D(dst,p,q,jx);}}cvSaveImage("3.jpg",dst);//释放指针cvReleaseImage(&dst1);cvReleaseImage(&dst2);cvReleaseImage(&dst3);cvReleaseImage(&imgroi1);cvReleaseImage(&imgroi2);cvReleaseImage(&imgroi3);cvReleaseImage(&roidark);cvReleaseImage(&dark_channel);cvReleaseImage(&toushelv);cvReleaseImage(&j1);cvReleaseImage(&j2);cvReleaseImage(&j3);return dst;
}
编译运行后:



得到结果如下:


其实上面的代码还可以再优化:

三通道可以分配三个线程分别计算,然后同步再做计算,应该效果会更好,本人的计算机就个双核,所以优势也体现不出来,就没做过多的优化了,就当入门。








这篇关于OpenCV编程-OpenMP优化入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709934

相关文章

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3