深度学习之google deepmind的alphago AI人工智能算法技术演变历程

本文主要是介绍深度学习之google deepmind的alphago AI人工智能算法技术演变历程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介


        最近大家比较关心的围棋人机大战(alphago vs 李世石)中,deep mind基于Nature2016文章的alphago在5局制的比赛中已经取得了3-1的成绩提前锁定了胜局。2016年google与facebook两个大拿在围棋领域基于深度学习都发表了文章,其中facebook文章如下:《BETTER COMPUTER GO PLAYER WITH NEURAL NET- WORKAND LONG-TERM PREDICTION》 ;Google文章如下:《Mastering the game of Go with deep neural networks and tree search》。这两篇文章都是蒙特卡洛搜索树+DCNN,效果google的alphago优于facebook的方法,刚好借此机会将之前看到的deep mind该领域的文章捋了一下。


       google在alphago之前就已经发表了相当多这方面的demo(https://www.youtube.com/channel/UCP7jMXSY2xbc3KCAE0MHQ-A)与文章,从其最早的NIPS2013文章《Playing Atari with Deep ReinforcementLearning》到现在的Nature2016 《Mastering the game of Go with Deep Neural Networks & Tree Search》。deep mind在此期间做了很多扎实的研究工作,本文将进行简单的描述。本文接下去会按如下几点内容进行叙述:1.Q-learning 2. Reinforcement learning 3. deep Q-Networks 4. alphago

 

二、Q-learning与Reinforcement learning


        增强学习Reinforcement learning的场景大部分有一个共同的特点,那就是这些场景有序列决策或者控制的问题,对于当前的任何一个state不能明确的对不同的action给出一个事先well defined的score值。它大多应用于如下的领域:机器人控制,市场决策,工业控制等。


        Q-learning是用于解决Reinforcement learning问题的一种常见方法,其经典的公式如下:

 

三、deep Q-Networks(DQN)


        2013发表NIPS文章《Playing Atari with Deep ReinforcementLearning》是deep mind公开的最早使用raw pixels作为输入的,用于解决reinforcement learning的深度学习网络DQN。在该文章中,作者在atari一系列的游戏上做了各种算法的比较,如下图所示:


在总共7个游戏中,有6个做到了算法中最好,其中还有3个做到了比人类专家还要好。该文章中提到的DQN有两个特点:1. 用来更新参数的minibatch是是从replay memory(回放记忆)中采样出来的,而不是仅仅的用当前一个片段或者session,这样能使得模型收敛性更好,否则会很容易训飞。2. value函数是一个多层网络。


        在上述文章提出后,deep mind在该问题上不停的打磨,不断的优化其工程与算法:


1. 2015发表ICML文章《MassivelyParallel Methods for Deep Reinforcement Learning》,该文章从工程上了做了4个方面的分布式:学习、决策、价值、经验,第1个属于学习,第2、3个属于网络方面,第4个偏存储方面。DQN的全面分布式将DQN的学习时间成本与模型效果都提升了一个档次。DQN分布式结构简要如下:


2. 2016发表ICLR文章《PRIORITIZEDEXPERIENCE REPLAY》,该文章指出了原DQN中经验均匀采样的问题,并从防过拟合、防局部最优这些点上,设计了介于均匀采样与纯优先级贪心之间的经验采样方法,提出的这个改进再次将DQN的模型效果提升了一个档次。


3. 2016发表ICLR文章《PolicyDistillation》,该篇文章实际上是做了DQN的transfer learning的实验,有很多思想与hinton的dark knowledge里面的东西都很相似,其方法示意图如下所示:

 

四、alphago


训练阶段:


alphago训练如下图a中展示了alphago相应的4个neural network,b中主要展示了policy network与value network及其输出形式。


           

 


1. policy network(14层,输出棋盘每步move概率值),它首先采用supervisedlearning训练方法在KGS数据集上达到了55.7%的专家moves预测准确率,然后由reinforcement learning训练方法进行自我训练(每一次训练都在前几次迭代完的模型中随机一个模型做决策),自我训练的policy network在80%的情况下打败了supervised learning训练出来的policy network。


2. value network(15层,预测棋盘下一步move),该网络由pair训练数据做regressionloss反馈更新得到。在KGS的数据集上,该训练方法出现了过拟合的现象(训练MSE0.19,测试MSE0.37),但若在reinforcement learning学出来的policy network基础上产生出的自我训练集里进行采样学习的话,就可以有效的避免该问题(训练MSE0.226,测试MSE0.234)。

 

预测阶段:


        在alphago系统模拟的时候,每一个action由如下三个因素决定:s状态下a的访问次数,RL policy network for action value,SL policy networkfor prior probability;在alphago系统模拟的时候,每一个叶子节点价值由如下两个因素决定:value network,rollout network;在alphago系统所有模拟都结束后,由上述两点计算得到s状态下a的value值。综上RL与SL学习出来的两个policy network共同决定了蒙特卡洛搜索树节点的选择,value network与rollout network决定了模拟出来的叶子节点的价值,最终s状态下a的value由上述两部分共同影响得到。最后alphago系统选择s状态下最优的action作为围棋当前的move。

            

这篇关于深度学习之google deepmind的alphago AI人工智能算法技术演变历程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709117

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑