openmv串口数据 串口助手_串口发送模块——1字节数据发送

2024-02-14 15:20

本文主要是介绍openmv串口数据 串口助手_串口发送模块——1字节数据发送,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设计思想与代码规范均借鉴明德扬至简设计法,有不足之处希望大家多提建议,真正做到至简设计。本篇着重提出FPGA通用设计思想,以计数器为核心的代码规范以及VIVADO debug操作流程。
  此次试验旨在通过串口试验,讲述FPGA的硬件设计思想和通用设计流程。串口是电子设计中非常常见,可以说掌握了串口数据收发,就明白了最基本的时序操作。串口的数据收发过程有其固定的数据格式。下面是本次实验使用的数据格式,在满足串口格式规范前提下是可变的:

7103b7686b451cf21e8f93ad8fdaad44.png


  空闲状态下为高电平,当发送数据时,先发送低电平起始位,后从低位开始逐位发送有效数据比特,数据位位数由双方约定,此处设定为8位。可在数据位后添加数据校验位,但这不是必须的。发送完后发送高电平停止位并持续空闲状态直至下一次发送。虽然本次实验没有用到,但这里简要讲一下奇偶校验的原理:
  奇偶校验是一种非常简单常用的数据校验方式,分为奇校验和偶校验。奇校验需要保证传输的数据总共有奇数个逻辑高电平,若是偶校验则要保证传输的数据有偶数个逻辑高电平。即“奇偶”的意思就是数据中(包括该校验位)中1的个数。例如:传输的数据位是0100_0011。如果是奇校验,校验位是0,偶校验校验位是1。
  在串口通信中,波特率是一个非常重要的概念。串口通信中常用的波特率是9600、19200、38400、57600、115200。波特率是每个码元传输的速率,在二进制数据传输中,和比特率相同,都是每个比特数据传输的速率,其倒数为1bit数据的位宽,也就是1bit数据持续的时间。有了这一时间段,就可用FPGA构造计数器实现比特周期的延时,从而实现特定的数据传输波特率。
  有了这些预备知识,我们开始设计串口发送模块。第一步要明确设计目的:要设计的模块功能当一个时钟周期使能信号有效时,将输入数据通过串口发送给PC机。后续可以通过FIFO缓存数据,实现多个数据的发送。知道设计目的后,通常要开始根据大体功能进行模块划分,模块之间的接口定义以及各模块内部的硬件设计。本次实验只有一个模块,所以直接从模块接口定义开始。每个模块都要有必要的时钟和复位输入,另外串口发送模块需要确保数据不重复发送,因此要有发送使能信号。为了满足不同速率需求,需要波特率设定输入信号来选通不同的波特率。最重要的是待发送数据输入端口。发送侧要有数据串行输出端口和发送完成指示输出。综上,串口发送模块接口示意图如下:

197654a423ca36638655be8f0832eac5.png


 现在开始模块内部功能的硬件实现。首先需要一个参数可变的分频计数器满足不同波特率要求。为此需要一个查找表结构对输入的波特率设定指令进行译码,改变计数器参数。然后要将数据进行并串转换可以通过一个比特位计数器控制数据选择器实现,这样可以将发送比特位数与待发送数据位数相对应。至于发送完成指示信号只需根据比特计数器的数值改变即可。在设计代码前先画出主要信号的时序波形图有助于理清思路:(此处假设比特计数器每个时钟周期计数一次便于画图)

2f12cc196ccdfc6b2aa2ba2edb02a894.png


 到目前为止最重要的设计工作已经做完了,接下来的代码编写也就没有任何难度可言。
串口发送模块代码:

aa8ffba6e1386147a2911ba09d53be68.png


1 `timescale 1ns / 1ps 2 3 module uart_tx( 4 input clk, 5 input rst_n, 6 input [2:0] baud_set, 7 input send_en, 8 input [7:0] data_in, 9 10 output reg data_out,11 output tx_done12 );13 14 reg [15:0] CYC;15 reg [15:0] cnt_div;16 (*mark_debug = "true"*)reg [3:0] cnt_bit;17 reg add_flag;18 19 wire add_cnt_div;20 (*mark_debug = "true"*)wire end_cnt_div;21 wire add_cnt_bit,end_cnt_bit;22 23 //分频计数器24 always@(posedge clk or negedge rst_n)begin25 if(!rst_n)26 cnt_div <= 0;27 else if(add_cnt_div)begin28 if(end_cnt_div)29 cnt_div <= 0;30 else 31 cnt_div <= cnt_div + 1'b1;32 end33 end34 35 assign add_cnt_div = add_flag;36 assign end_cnt_div = add_cnt_div && cnt_div == CYC - 1;37 38 //比特位数计数器39 always@(posedge clk or negedge rst_n)begin40 if(!rst_n)41 cnt_bit <= 0;42 else if(add_cnt_bit)begin43 if(end_cnt_bit)44 cnt_bit <= 0;45 else 46 cnt_bit <= cnt_bit + 1'b1;47 end48 end49 50 assign add_cnt_bit = end_cnt_div;51 assign end_cnt_bit = add_cnt_bit && cnt_bit == 10 - 1;52 53 //发送使能后分频计数器开始计数,直到将起始位、数据位、停止位发送完成为止54 always@(posedge clk or negedge rst_n)begin55 if(!rst_n)56 add_flag <= 0;57 else if(send_en)58 add_flag <= 1;59 else if(end_cnt_bit)60 add_flag <= 0;61 end62 //波特率查找表63 always@(*)begin64 case(baud_set)65 3'b000:CYC <= 20833;//960066 3'b001:CYC <= 10417;//1920067 3'b010:CYC <= 5208;//3840068 3'b011:CYC <= 3472;//5760069 3'b100:CYC <= 1736;//11520070 default:CYC <= 20833;//960071 endcase72 end73 //根据比特计数器得到对应比特位74 always@(posedge clk or negedge rst_n)begin75 if(!rst_n)76 data_out <= 1;77 else if(send_en)78 data_out <= 0;79 else if(add_cnt_bit && cnt_bit >= 0 && cnt_bit < 8)80 data_out <= data_in[cnt_bit];81 else if((add_cnt_bit && cnt_bit == 8) || end_cnt_bit)82 data_out <= 1;//结束位或者空闲状态均为高电平83 end84 85 assign tx_done = end_cnt_bit;86 87 endmodule

aa8ffba6e1386147a2911ba09d53be68.png


现编写测试激励,观察仿真波形是否与预期一致:

aa8ffba6e1386147a2911ba09d53be68.png


1 `timescale 1ns / 1ps 2 3 module uart_tx_tb; 4 5 reg clk,rst_n; 6 reg [2:0] baud_set; 7 reg send_en; 8 reg [7:0] data_in; 9 10 wire data_out;11 wire tx_done;12 13 uart_tx uart_tx(14 .clk(clk),15

这篇关于openmv串口数据 串口助手_串口发送模块——1字节数据发送的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708865

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指